
© Copyright 1999 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

Learning to Extract Keyphrases from Text

P. Turney
February 17, 1999

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l’information

ERB-1057
NRC-41622

Learning to Extract Keyphrases from Text

ERB-1057 February 17, 1999

Abstract

Many academic journals ask their authors to provide a list of about five to fifteen key words,
to appear on the first page of each article. Since these key words are often phrases of two or
more words, we prefer to call them keyphrases. There is a surprisingly wide variety of tasks
for which keyphrases are useful, as we discuss in this paper. Recent commercial software, such
as Microsoft’s Word 97 and Verity’s Search 97, includes algorithms that automatically extract
keyphrases from documents.1 In this paper, we approach the problem of automatically extract-
ing keyphrases from text as a supervised learning task. We treat a document as a set of phrases,
which the learning algorithm must learn to classify as positive or negative examples of key-
phrases. Our first set of experiments applies the C4.5 decision tree induction algorithm to this
learning task. The second set of experiments applies the GenEx algorithm to the task. We
developed the GenEx algorithm specifically for this task. The third set of experiments exam-
ines the performance of GenEx on the task of metadata generation, relative to the performance
of Microsoft’s Word 97. The fourth and final set of experiments investigates the performance
of GenEx on the task of highlighting, relative to Verity’s Search 97. The experimental results
support the claim that a specialized learning algorithm (GenEx) can generate better keyphrases
than a general-purpose learning algorithm (C4.5) and the non-learning algorithms that are used
in commercial software (Word 97 and Search 97).

Contents
1. Introduction..1
2. Applications for Keyphrases..3
3. Measuring the Performance of Keyphrase Extraction Algorithms..6
4. Related Work ...9
5. The Corpora ...12
6. Applying C4.5 to Keyphrase Extraction ..17
7. Experiment 1: Learning to Extract Keyphrases with C4.5 ..19
8. GenEx: A Hybrid Genetic Algorithm for Keyphrase Extraction...25
9. Experiment 2: Learning to Extract Keyphrases with GenEx...32
10. Experiment 3: Keyphrases for Metadata..35
11. Experiment 4: Keyphrases for Highlighting ..35
12. Discussion ..38
13. Conclusion ...39

Acknowledgments..40
Notes ..40
References..41

1. Introduction

Turney 1

1. Introduction
Many journals ask their authors to provide a list of key words for their articles. We call these key-
phrases, rather than key words, because they are often phrases of two or more words, rather than
single words. We define a keyphrase list as a short list of phrases (typically five to fifteen noun
phrases) that capture the main topics discussed in a given document. This paper is concerned
with the automatic extraction of keyphrases from text.

Keyphrases are meant to serve multiple goals. For example, (1) when they are printed on the
first page of a journal article, the goal is summarization. In this case, the keyphrases are like an
extreme form of abstract. They enable the reader to quickly determine whether the given article
is in the reader’s fields of interest. (2) When they are printed in the cumulative index for a jour-
nal, the goal is indexing. They enable the reader to quickly find a relevant article when the reader
has a specific need. (3) When a search engine form has a field labelled “key words”, the goal is
to enable the reader to make the search more precise. A search for documents that match a given
query term in the “key word” field will yield a smaller, higher quality list of hits than a search
for the same term in the full text of the documents. Keyphrases can serve these diverse goals and
others, because the goals share the common requirement for a short list of phrases that capture
the main topics discussed in the documents.

In Section 2, we present five different software applications for keyphrases. (1) Keyphrases
are a valuable part of document metadata (meta-information for document management). (2)
Documents can be skimmed more easily when keyphrases are highlighted. (3) Keyphrases can be
used as index terms for searching in document collections. (4) Keyphrases can be used as sug-
gestions for refining a query to a search engine. (5) Keyphrases can be used to analyze usage pat-
terns in web server logs. These examples motivate our research by showing the utility of
keyphrases.

There is a need for tools that can automatically create keyphrases. Although keyphrases are
very useful, only a small minority of the many documents that are available on-line today have
keyphrases. In HTML, the META tag enables authors to include keywords in their documents,
but the common practice today is to use the keywords in the META tag to bias search engines.
Authors use the keyword META tag to increase the likelihood that their web pages will appear,
with a high rank, when people enter queries in web search engines. Therefore the keyword tag is
typically filled with a huge list of barely relevant terms. These terms are not intended for human
consumption. The demand for good, human-readable keyphrases far exceeds the current supply.

We define automatic keyphrase extraction as the automatic selection of important, topical
phrases from within the body of a document. Automatic keyphrase extraction is a special case of
the more general task of automatic keyphrase generation, in which the generated phrases do not
necessarily appear in the body of the given document. Section 3 discusses criteria for measuring
the performance of automatic keyphrase extraction algorithms. In the experiments in this paper,
we measure the performance by comparing machine-generated keyphrases with human-gener-
ated keyphrases. In our document collections, 65% to 90% of the author’s keyphrases appear
somewhere in the body of the document. An ideal keyphrase extraction algorithm could (in prin-
ciple) generate phrases that match up to 90% of the author’s keyphrases.

We discuss related work by other researchers in Section 4. Perhaps the most closely related
work involves the problem of automatic index generation (Fagan, 1987; Salton, 1988; Ginsberg,
1993; Nakagawa, 1997; Leung and Kan, 1997). Although keyphrases may be used in an index,
keyphrases have other applications, beyond indexing. The main difference between a keyphrase
list and an index is length. Because a keyphrase list is relatively short, it must contain only the

1. Introduction

2 ERB-1057, Learning to Extract Keyphrases from Text

most important, topical phrases for a given document. Because an index is relatively long, it can
contain many less important, less topical phrases. Also, a keyphrase list can be read and judged
in seconds, but an index might never be read in its entirety. Automatic keyphrase extraction is, in
many ways, a more demanding task than automatic index generation.

Keyphrase extraction is also distinct from information extraction, the task that has been stud-
ied in depth in the Message Understanding Conferences (MUC-3, 1991; MUC-4, 1992; MUC-5,
1993; MUC-6, 1995). Information extraction involves extracting specific types of task-depen-
dent information. For example, given a collection of news reports on terrorist attacks, informa-
tion extraction involves finding specific kinds of information, such as the name of the terrorist
organization, the names of the victims, and the type of incident (e.g., kidnapping, murder, bomb-
ing). In contrast, keyphrase extraction is not specific. The goal in keyphrase extraction is to pro-
duce topical phrases, for any type of factual document (automatic keyphrase extraction is not
likely to work well with poetry).

The experiments in this paper use five collections of documents, with a combined total of
652 documents. Each document has an associated list of human-generated keyphrases. We use
290 documents for training the learning algorithms and 362 for testing. The collections are pre-
sented in detail in Section 5.

We approach automatic keyphrase extraction as a supervised learning task. We treat a docu-
ment as a set of phrases, which must be classified as either positive or negative examples of key-
phrases. This is the classical machine learning problem of learning from examples. In Section 6,
we describe how we apply the C4.5 decision tree induction algorithm to this task (Quinlan,
1993). There are several unusual aspects to this classification problem. For example, the positive
examples constitute only 0.2% to 2.4% of the total number of examples. C4.5 is typically applied
to more balanced class distributions.

In our first set of experiments (Section 7), we evaluate different ways to apply C4.5. In pre-
liminary experiments with the training documents, we found that bagging seemed to improve the
performance of C4.5 (Breiman, 1996a, 1996b; Quinlan, 1996). Bagging works by generating
many different decision trees and allowing them to vote on the classification of each example.
We experimented with different numbers of trees and different techniques for sampling the train-
ing data. The experiments support the hypothesis that bagging improves the performance of C4.5
when applied to automatic keyphrase extraction.

During the course of our experiments with C4.5, we came to believe that a specialized algo-
rithm, developed specifically for learning to extract keyphrases from text, might achieve better
results than a general-purpose learning algorithm, such as C4.5. Section 8 introduces the GenEx
algorithm. GenEx is a hybrid of the Genitor steady-state genetic algorithm (Whitley, 1989) and
the Extractor parameterized keyphrase extraction algorithm (NRC, patent pending). Extractor
works by assigning a numerical score to the phrases in the input document. The final output of
Extractor is essentially a list of the highest scoring phrases. The behaviour of the scoring func-
tion is determined by a dozen numerical parameters. Genitor tunes the setting of these parame-
ters, to maximize the performance of Extractor on a given set of training examples.

The second set of experiments (Section 9) supports the hypothesis that a specialized learning
algorithm (GenEx) can generate better keyphrases than a general-purpose learning algorithm
(C4.5). This is not surprising, because a strongly biased, specialized learning algorithm should
be able to perform better than a weakly biased, general-purpose learning algorithm, when the
bias is suitable for the given learning problem. However, the results are interesting, because they
support the hypothesis that the bias that is built into GenEx is suitable for its intended task.

Although the experiments show that GenEx extracts better keyphrases than C4.5, it is not

2. Applications for Keyphrases

Turney 3

clear from the experiments whether either algorithm works well enough to be used in commer-
cial software. Therefore, in Section 10, we use GenEx to generate keyphrase metadata and we
compare the resulting metadata with the metadata generated by the AutoSummarize feature in
Microsoft’s Word 97. We find that GenEx metadata is significantly closer to human-generated
metadata. The experiments support the claim that the performance of GenEx is sufficiently good
for commercial applications in automatic metadata generation.

In Section 11, we apply GenEx to the task of highlighting text to facilitate skimming and we
compare the highlighted terms with the terms selected by Verity’s Search 97. We find that GenEx
selects terms that are more similar to human-generated keyphrases than the terms selected by
Verity’s Search 97. The experiments support the claim that the performance of GenEx is suffi-
ciently good for commercial applications in automatic highlighting.

Section 12 presents the current status of our work with GenEx and our plans for future work.
We conclude (in Section 13) that it is feasible to learn to extract keyphrases from text. It appears
that a specialized learning algorithm can achieve better performance than current non-learning
commercial algorithms for automatically extracting keyphrases from text.

2. Applications for Keyphrases
There are many potential applications for keyphrases. In this section, we discuss five actual
applications. The variety of applications is an important motivation for our research in learning
to automatically extract keyphrases from documents.

2.1 Keyphrases for Metadata
With the growth of the Internet and corporate intranets, the problems of document management
have also grown. Many researchers believe that metadata is essential to address the problems of
document management. Metadata is meta-information about a document or set of documents.
There are several standards for document metadata, including the Dublin Core Metadata Element
Set (championed by the US Online Computer Library Center), the MARC (Machine-Readable
Cataloging) format (maintained by the US Library of Congress), the GILS (Government Infor-
mation Locator Service) standard (from the US Office of Social and Economic Data Analysis),
and the CSDGM (Content Standards for Digital Geospatial Metadata) standard (from the US
Federal Geographic Data Committee). All of these standards include a field for keyphrases
(although they have different names for this field).

Some software tools for editing documents now include support for metadata creation. For
example, Microsoft’s Word 97 can store metadata for a document and it can automatically gener-
ate keyphrase metadata. Figure 1 shows an example of the “File Properties” metadata template in
Microsoft’s Word 97. In this illustration, the Keywords and Comments fields were filled auto-
matically, as a side-effect of selecting AutoSummarize from the Tools menu. The Title and
Author fields were filled by hand. A good algorithm for automatically generating keyphrases can
be very helpful for metadata creation.

2.2 Keyphrases for Highlighting
When we skim a document, we scan for keyphrases, to quickly determine the topic of the docu-
ment. Highlighting is the practice of emphasizing keyphrases and key passages (e.g., sentences
or paragraphs) by underlining the key text, using a special font, or marking the key text with a
special colour. The purpose of highlighting is to facilitate skimming.

2. Applications for Keyphrases

4 ERB-1057, Learning to Extract Keyphrases from Text

Some software tools for document management now support skimming by automatically
highlighting keyphrases. For example, Verity’s Search 97 is a commercial search engine. When
the user enters a query in Verity’s Search 97, the list of matching documents (the “hit list”) can
contain automatically generated summaries of each document, using Search 97’s Summarize fea-
ture. Figure 2 shows an example of a hit list in Search 97. Keyphrases within each summary are
automatically selected and highlighted with a bold font. A good algorithm for automatically gen-
erating keyphrases can be very helpful for automatic highlighting.

2.3 Keyphrases for Indexing
An alphabetical list of keyphrases, taken from a collection of documents or from parts of a single
long document (e.g., chapters in a book), can serve as an index. Figure 3 shows a Java applet
(developed at NRC by Joel Martin) for manipulating an alphabetical index. In this example, the
document collection is around 100 articles from the Journal of Artificial Intelligence Research.
The alphabetical list of keyphrases was generated using GenEx. In the first window (“1. Type
here to narrow phrase list.”), the user has entered part of a word, “learni”. In the second window,
the Java applet lists all of the machine-generated keyphrases in which one of the words in the
phrase begins with “learni”. The user has selected the phrase “multi-agent reinforcement learn-
ing” from this list. The third window shows the title of the article from which this keyphrase was
extracted. If the user selects the title, the Java applet will display the abstract of the paper.

2.4 Keyphrases for Interactive Query Refinement
Using a search engine is often an iterative process. The user enters a query, examines the result-
ing hit list, modifies the query, then tries again. Most search engines do not have any special fea-
tures that support the iterative aspect of searching. Figure 4 shows a search engine (developed at

Figure 1: Keyphrases for metadata: This pop-up window shows an example of the “File
Properties” metadata in Microsoft’s Word 97.

2. Applications for Keyphrases

Turney 5

NRC) for searching for journal articles in the Journal of Artificial Intelligence Research. This
search engine was developed to support interactive query refinement. In Figure 4, the user has
entered the query “learning” in the top frame. The left frame shows the matching documents and
the right frame lists suggestions for narrowing the original query. These suggestions are key-
phrases extracted by GenEx from the documents that are listed in the left frame. The query terms
are combined by conjunction, so the hit list (in the left frame) becomes smaller with each itera-
tion. However, adding the suggested terms (in the right frame) will never result in an empty hit
list, because the terms necessarily appear in at least one of the documents in the hit list.

Figure 2: Keyphrases for highlighting: In Verity’s Search 97, keyphrases within each
summary are automatically selected and highlighted with a bold font.

Figure 3: Keyphrases for indexing: This Java applet lets users search for journal articles
by manipulating a list of automatically generated keyphrases.

3. Measuring the Performance of Keyphrase Extraction Algorithms

6 ERB-1057, Learning to Extract Keyphrases from Text

2.5 Keyphrases for Web Log Analysis
Web site managers often want to know what visitors to their site are seeking. Most web servers
have log files that record information about visitors, including the Internet address of the client
machine, the file that was requested by the client, and the date and time of the request. There are
several commercial products that analyze these logs for web site managers. Typically these tools
will give a summary of general traffic patterns and produce an ordered list of the most popular
files on the web site.

Figure 5 shows the output of a web log analysis program that uses keyphrases (developed at
NRC). Instead of producing an ordered list of the most popular files on the web site, this tool
produces a list of the most popular keyphrases on the site. This gives web site managers insight
into which topics on the web site are most popular.

3. Measuring the Performance of Keyphrase Extraction Algorithms
We measure the performance of keyphrase extraction algorithms by comparing their output to
handmade keyphrases. The performance measure is based on the number of matches between the
machine-generated phrases and the human-generated phrases. In the following subsections, we
define what we mean by matching phrases and we describe how the performance measure is cal-
culated from the number of matches.

3.1 Criteria for Matching Phrases
If an author suggests the keyphrase “neural network” and a keyphrase generation algorithm sug-
gests the keyphrase “neural networks”, we want to count this as a match, although one phrase is

Figure 4: Keyphrases for interactive query refinement: The suggested query
refinements in the right frame are based on keyphrases that are automatically extracted

from the documents listed in the left frame.

3. Measuring the Performance of Keyphrase Extraction Algorithms

Turney 7

singular and the other is plural. On the other hand, if the author suggests “neural networks” and
the algorithm suggests “networks”, we do not want to count this as a match, since there are many
different kinds of networks.

In the experiments that follow, we say that a handmade keyphrase matches a machine-gener-
ated keyphrase when they correspond to the same sequence of stems. A stem is what remains
when we remove the suffixes from a word. By this definition, “neural networks” matches “neural
network”, but it does not match “networks”. The order in the sequence is important, so “helicop-
ter skiing” does not match “skiing helicopter”. To be more precise about our criteria for match-
ing phrases, we need to say more about how a word is converted to its stem.

3.2 Stemming
The Porter (1980) and Lovins (1968) stemming algorithms are the two most popular algorithms
for stemming English words.2 Both algorithms use heuristic rules to remove or transform
English suffixes. Another approach to stemming is to use a dictionary that explicitly lists the
stem for every word that might be encountered in the given text. Heuristics are usually preferred
to a dictionary, due to the labour involved in constructing the dictionary and the computer
resources (storage space and execution time) required to use the dictionary.

The Lovins stemmer is more aggressive than the Porter stemmer. That is, the Lovins stemmer
is more likely to map two words to the same stem, but it is also more likely to make mistakes

Figure 5: Keyphrases for web log analysis: Traffic records in a web server log are
analyzed here by looking at the frequency of keyphrases, instead of the frequency of URLs.

The keyphrases are automatically extracted from the web pages on the server.

3. Measuring the Performance of Keyphrase Extraction Algorithms

8 ERB-1057, Learning to Extract Keyphrases from Text

(Krovetz, 1993). For example, the Lovins stemmer correctly maps “psychology” and “psycholo-
gist” to the same stem, “psycholog”, but the Porter stemmer incorrectly maps them to different
stems, “psychologi” and “psychologist”. On the other hand, the Porter stemmer correctly maps
“police” and “policy” to different stems, “polic” and “polici”, but the Lovins stemmer incor-
rectly maps them to the same stem, “polic”.

We have found that aggressive stemming is better for keyphrase extraction than conservative
stemming. In our experiments, we have used an aggressive stemming algorithm that we call the
Iterated Lovins stemmer. The algorithm repeatedly applies the Lovins stemmer, until the word
stops changing. For example, given “incredible” as input, the Lovins stemmer generates “incred”
as output. Given “incred” as input, it generates “incr” as output. With “incr” as input, the output
is also “incr”. Thus the Iterated Lovins algorithm, given “incredible” as input, generates “incr”
as output. Iterating in this manner will necessarily increase (or leave unchanged) the aggressive-
ness of any stemmer.

3.3 Precision and Recall
We may view keyphrase extraction as a classification problem. If we think of a document as a set
of words and phrases, then the task is to classify each word or phrase into one of two categories:
either it is a keyphrase or it is not a keyphrase. We can evaluate an automatic keyphrase extrac-
tion algorithm by the degree to which its classifications correspond to the human-generated clas-
sifications. The outcome of applying a keyphrase extraction algorithm to a corpus can be neatly
summarized with a confusion matrix, as in Table 1. The variable a represents the number of
times that the human-generated keyphrase matches a machine-generated keyphrase. The variable
d represents the number of times that the human and the machine agree that a phrase is not a key-
phrase. The variables b and c represent the number of times that the human and the machine dis-
agree on the classification of a phrase.

We consider both “neural network” and “neural networks” to be matches for the phrase “neu-
ral network”. Therefore it is better to think of the task as classification of stemmed phrases,
rather than classification of whole phrases. The Iterated Lovins stemmer transforms both whole
phrases “neural network” and “neural networks” into the stemmed phrase “neur network”. If a
person suggests that “neural networks” is a good keyphrase for an article, we interpret that as
classifying the stemmed phrase “neur network” as a keyphrase.

We would like to have a single number that represents the performance of a keyphrase
extraction algorithm. In other words, we would like a suitable function that maps a, b, c, and d to
a single value. It is common to use accuracy to reduce a confusion matrix to a single value:

(1)

Table 1: The confusion matrix for keyphrase classification.

Classified as a Keyphrase
by the Human

Classified as Not a
Keyphrase by the Human

Classified as a Keyphrase by the
Machine

a b

Classified as Not a Keyphrase by the
Machine

c d

accuracy
a d+

a b c d+ + +
------------------------------=

4. Related Work

Turney 9

Unfortunately, there are some problems with using accuracy here. One problem is that, because
the class distribution is highly skewed (there are many more negative examples — phrases that
are not keyphrases — than positive examples), we can achieve very high accuracy by always
guessing the majority class. That is, if a trivial keyphrase extraction algorithm always generates
an empty set of keyphrases (), for any input document, its accuracy would typically
be above 99%.

Researchers in information retrieval use precision and recall to evaluate the performance of
a search engine:

(2)

(3)

Precision is an estimate of the probability that, if a given search engine classifies a document as
relevant to a user’s query, then it really is relevant. Recall is an estimate of the probability that, if
a document is relevant to a user’s query, then a given search engine will classify it as relevant.

There is a well-known trade-off between precision and recall. We can optimize one at the
expense of the other. For example, if we guess that the entire document collection is relevant,
then our recall is necessarily 100%, but our precision will be close to 0%. On the other hand, if
we take the document that we are most confident is relevant and guess that only this single doc-
ument is relevant to the user’s query, then our precision might be 100%, but our recall would be
close to 0%. We want a performance measure that yields a high score only when precision and
recall are balanced.

In the experiments that follow, we use two methods for measuring performance. Both of
these methods are widely used in research in information retrieval. (1) We examine precision
with a variety of cut-offs for the number of machine-generated keyphrases (). This is our
preferred method, because it shows how the performance varies as the user adjusts the desired
number of keyphrases. (2) We use the F-measure (van Rijsbergen, 1979; Lewis, 1995):

(4)

When precision and recall are nearly equal, the F-measure is nearly the same as the average of
precision and recall. When precision and recall are not balanced, the F-measure is less than the
average.

4. Related Work
In this section, we discuss some related work. Although there are several papers that discuss
automatically extracting important phrases, as far as we know, none of these papers treat this
problem as supervised learning from examples.

Krulwich and Burkey (1996) use heuristics to extract significant phrases from a document.
The heuristics are based on syntactic clues, such as the use of italics, the presence of phrases in
section headers, and the use of acronyms. Their motivation is to produce phrases for use as fea-
tures when automatically classifying documents. Their algorithm tends to produce a relatively
large list of phrases, so it has low precision, and thus low F-measure.

Muñoz (1996) uses an unsupervised learning algorithm to discover two-word keyphrases.
The algorithm is based on Adaptive Resonance Theory (ART) neural networks. Muñoz’s algo-

a b 0= =

precision
a

a b+
------------=

recall
a

a c+
------------=

a b+

F-measure
2 precision recall⋅ ⋅
precision recall+

2a

2a b c+ +
------------------------= =

4. Related Work

10 ERB-1057, Learning to Extract Keyphrases from Text

rithm tends to produce a large list of phrases, so it has low precision, and thus low F-measure.
Also, the algorithm is not applicable to one-word or more-than-two-word keyphrases.

Steier and Belew (1993) use the mutual information statistic to discover two-word key-
phrases. This approach has the same limitations as Muñoz (1996), when considered as a key-
phrase extraction algorithm: it produces a low precision list of two-word phrases. Steier and
Belew (1993) compare the mutual information of word pairs within specific topic areas (e.g.,
documents concerned with labour relations) and across more general collections (e.g., legal doc-
uments). They make the interesting observation that certain phrases that would seem to be highly
characteristic of a certain topic area (e.g., “union member” would seem to be characteristic of
documents concerned with labour relations) actually have a higher mutual information statistic
across more general collections (e.g., “union member” has a higher mutual information across a
general legal collection than within the topic area of labour relations).

Several papers explore the task of producing a summary of a document by extracting key
sentences from the document (Luhn, 1958; Edmundson, 1969; Marsh et al., 1984; Paice, 1990;
Paice and Jones, 1993; Johnson et al., 1993; Salton et al., 1994; Kupiec et al., 1995; Brandow et
al., 1995; Jang and Myaeng, 1997). This task is similar to the task of keyphrase extraction, but it
is more difficult. The extracted sentences often lack cohesion because anaphoric references are
not resolved (Johnson et al., 1993; Brandow et al., 1995). Anaphors are pronouns (e.g., “it”,
“they”), definite noun phrases (e.g., “the car”), and demonstratives (e.g., “this”, “these”) that
refer to previously discussed concepts. When a sentence is extracted out of the context of its
neighbouring sentences, it may be impossible or very difficult for the reader of the summary to
determine the referents of the anaphors. Johnson et al. (1993) attempt to automatically resolve
anaphors, but their system tends to produce overly long summaries. Keyphrase extraction avoids
this problem because anaphors are not keyphrases.3 Also, a list of keyphrases has no structure;
unlike a list of sentences, a list of keyphrases can be randomly permuted without significant con-
sequences.4

Most of these papers on summarization by sentence extraction describe algorithms that are
based on manually derived heuristics. The heuristics tend to be effective for the intended
domain, but they often do not generalize well to a new domain. Extending the heuristics to a new
domain involves a significant amount of manual work. A few of the papers describe learning
algorithms, which can be trained by supplying documents with associated target summaries
(Kupiec et al., 1995; Jang and Myaeng, 1997). Learning algorithms can be extended to new
domains with less work than algorithms that use manually derived heuristics. However, there is
still some manual work involved, because the training summaries must be composed of sen-
tences that appear in the document, which means that standard author-supplied abstracts are not
suitable. An advantage of keyphrase extraction is that standard author-supplied keyphrases are
suitable for training a learning algorithm, because the majority of such keyphrases appear in the
bodies of the corresponding documents. Kupiec et al. (1995) and Jang and Myaeng (1997) use a
Bayesian statistical model to learn how to extract key sentences. A Bayesian approach may be
applicable to keyphrase extraction.

Another body of related work addresses the task of information extraction. An information
extraction system seeks specific information in a document, according to predefined guidelines.
The guidelines are specific to a given topic area. For example, if the topic area is news reports of
terrorist attacks, the guidelines might specify that the information extraction system should iden-
tify (i) the terrorist organization involved in the attack, (ii) the victims of the attack, (iii) the type
of attack (kidnapping, murder, etc.), and other information of this type that can be expected in a
typical document in the topic area. ARPA has sponsored a series of Message Understanding

4. Related Work

Turney 11

Conferences (MUC-3, 1991; MUC-4, 1992; MUC-5, 1993; MUC-6, 1995), where information
extraction systems are evaluated with corpora in various topic areas, including terrorist attacks
and corporate mergers.

Most information extraction systems are manually built for a single topic area, which
requires a large amount of expert labour. The highest performance at the Fifth Message Under-
standing Conference (MUC-5, 1993) was achieved at the cost of two years of intense program-
ming effort. However, recent work has demonstrated that a learning algorithm can perform as
well as a manually constructed system (Soderland and Lehnert, 1994). Soderland and Lehnert
(1994) use decision tree induction as the learning component in their information extraction sys-
tem. We may view the predefined guidelines for a given topic area as defining a template to be
filled in by the information extraction system. In Soderland and Lehnert’s (1994) system, each
slot in the template is handled by a group of decision trees that have been trained specially for
that slot. The nodes in the decision trees are based on syntactical features of the text, such as the
presence of certain words.

Information extraction and keyphrase extraction are at opposite ends of a continuum that
ranges from detailed, specific, and domain-dependent (information extraction) to condensed,
general, and domain-independent (keyphrase extraction). The different ends of this continuum
require substantially different algorithms. However, there are intermediate points on this contin-
uum. An example is the task of identifying corporate names in business news. This task was
introduced in the Sixth Message Understanding Conference (MUC-6, 1995), where it was called
the Named Entity Recognition task. The competitors in this task were evaluated using the F-mea-
sure. The best system achieved a score of 0.964, which indicates that named entity recognition is
easier than keyphrase extraction (Krupka, 1995). This system used hand-crafted linguistic rules
to recognize named entities.5

Other related work addresses the problem of automatically creating an index (Fagan, 1987;
Salton, 1988; Ginsberg, 1993; Nakagawa, 1997; Leung and Kan, 1997). Leung and Kan (1997)
provide a good survey of this work. There are two general classes of indexes: indexes that are
intended for human readers to browse (often called back-of-book indexes) and indexes that are
intended for use with information retrieval software (search engine indexes). Search engine
indexes are not suitable for human browsing, since they usually index every occurrence of every
word (excluding stop words, such as “the” and “of”) in the document collection. Back-of-book
indexes tend to be much smaller, since they index only important occurrences of interesting
words and phrases.

Search engine indexes often contain single words, but not multi-word phrases. Several
researchers have experimented with extending search engine indexes with multi-word phrases.
The result of these experiments is that multi-word phrases have little impact on the performance
of search engines (Fagan, 1987; Croft, 1991). They do not appear to be worth the extra effort
required to generate them.

Since we are interested in keyphrases for human browsing, back-of-book indexes are more
relevant than search engine indexes. Leung and Kan (1997) address the problem of learning to
assign index terms from a controlled vocabulary. This involves building a statistical model for
each index term in the controlled vocabulary. The statistical model attempts to capture the syn-
tactic properties that distinguish documents for which the given index term is appropriate from
documents for which it is inappropriate. Their results are interesting, but the use of a controlled
vocabulary makes it difficult to compare their work with the algorithms we examine here. We
studied a small sample of controlled index terms in the INSPEC database, and we found that
very few of these terms appear in the bodies of the corresponding documents.6 It seems that

5. The Corpora

12 ERB-1057, Learning to Extract Keyphrases from Text

algorithms that are suitable for automatically generating controlled index terms are substantially
different from algorithms that are suitable for automatically extracting keyphrases. It is also
worth noting that a list of controlled index terms must grow every year, as the body of literature
grows, so Leung and Kan’s (1997) software would need to be continuously trained.

Nakagawa (1997) automatically extracts simple and compound nouns from technical manu-
als, to create back-of-book indexes. Each compound noun is scored using a formula that is based
on the frequency of its component nouns in the given document. In his experiments, Nakagawa
(1997) evaluates his algorithm by comparing human-generated indexes to machine-generated
indexes. He uses van Rijsbergen’s (1979) E-measure, which is simply 1 minus the F-measure
that we use in our experiments. His E-measure, averaged over five different manuals, corre-
sponds to an F-measure of 0.670. This suggests that back-of-book indexes are easier to generate
than keyphrases. Two factors that complicate the comparison are that Nakagawa (1997) uses Jap-
anese text, whereas we use English text, and Nakagawa’s (1997) human-generated indexes were
generated with the assistance of his algorithm, which tends to bias the results in favour of his
algorithm.

The main feature that distinguishes a back-of-book index from a keyphrase list is length. As
Nakagawa (1997) observes, a document is typically assigned keyphrases, but a back-
of-book index typically contains index terms. Also, keyphrases are usually intended to
cover the whole document, but index terms are intended to cover only a small part of a docu-
ment. A keyphrase extraction algorithm might be used to generate a back-of-book index by
breaking a long document into sections of one to three pages each. A back-of-book index gener-
ation algorithm might be used to generate keyphrases by selecting index terms that appear on
many pages throughout the book. Another distinguishing feature is that a sophisticated back-of-
book index is not simply an alphabetical list of terms. There is often a hierarchical structure,
where a major index term is followed by an indented list of related minor index terms.

5. The Corpora
The experiments in this paper are based on five different document collections, listed in
Table 2. For each document, there is a target set of keyphrases, generated by hand. In the
journal article corpus, the keyphrases were created by the authors of the articles. In the email
corpus, a university student created the keyphrases. In the three web page corpora, the key-
phrases were created by the authors of the web pages (as far as we know).

5.1 The Journal Article Corpus
We selected 75 journal articles from five different journals, listed in Table 3. The full text of
each article is available on the web. The authors have supplied keyphrases for each of these arti-
cles.

Three of the journals are about cognition (Psycoloquy, The Neuroscientist, Behavioral &
Brain Sciences Preprint Archive), one is about the hotel industry (Journal of the International
Academy of Hospitality Research), and one is about chemistry (Journal of Computer-Aided
Molecular Design). This mix of journals lets us see whether there is significant variation in per-
formance of the keyphrase extraction algorithms among journals in the same field (cognition)
and among journals in different fields (cognition, hotel industry, chemistry). Our experience
indicates that the chemistry journal is particularly challenging for automatic keyphrase extrac-
tion.

Table 4 gives some indication of how the statistics vary among the five journals. Most

100 101∼
102 103∼

5. The Corpora

Turney 13

authors use one or two words in a keyphrase. Occasionally they will use three words, but only
rarely will authors use four or five words. The final column shows, for each journal, the percent-
age of the authors’ keyphrases that appear at least once in the full text of the article (excluding
the keyword list, of course).

In the following experiments, Psycoloquy was used as the testing set and the remaining jour-
nals were used as the training set. We chose this split because it resulted in roughly 75% training
cases and 25% testing cases. We did not use a random split, because we wanted to test the ability
of the learning algorithms to generalize across journals. A random 75/25 split would most likely
have resulted in a training set with samples of articles from all five journals. We wanted the test-
ing set to contain articles from a journal that was not represented in the training set. This resulted
in 55 training documents and 20 testing documents.

Table 2: The five document collections.

Corpus Name Description
Number of
Training

Documents

Number of
Testing

Documents

Total
Number of
Documents

Journal Articles articles from five different aca-
demic journals

55 20 75

Email Messages email messages from six different
NRC employees

235 76 311

Aliweb Web Pages web pages from the Aliweb search
engine

0 90 90

NASA Web Pages web pages from NASA’s Langley
Research Center

0 141 141

FIPS Web Pages web pages from the US Govern-
ment’s Federal Information Pro-
cessing Standards

0 35 35

Total 290 362 652

Table 3: Sources for the journal articles.

Journal Name and URL
Number of
Documents

Journal of the International Academy of Hospitality Research
http://borg.lib.vt.edu/ejournals/JIAHR/jiahr.html

6

Psycoloquy
http://www.princeton.edu/~harnad/psyc.html

20

The Neuroscientist
http://www.theneuroscientist.com/

2

Journal of Computer-Aided Molecular Design
http://www.ibc.wustl.edu/jcamd/

14

Behavioral & Brain Sciences Preprint Archive
http://www.princeton.edu/~harnad/bbs.html

33

Total 75

5. The Corpora

14 ERB-1057, Learning to Extract Keyphrases from Text

5.2 The Email Message Corpus
We collected 311 email messages from six different NRC employees. Most of the messages were
incoming mail, both internal NRC mail and external mail. We believe that these messages are
representative of typical messages that are exchanged in corporate and institutional environ-
ments.

A university student created the keyphrases for the 311 email messages. The instructions to
the student were, “Please create a list of key words for each of these email messages by selecting
phrases from the body or subject field of each message.” We did not give a definition of “key
word”. Instead, we gave the student some examples of journal articles with keyphrases. To avoid
biasing the student, we did not explain our algorithms or our experimental designs until after the
student had finished creating the keyphrases. Since one individual created all of the keyphrases,
this corpus is likely to be more homogenous than the journal article corpus or the web page cor-
pora.

Table 5 shows that there is relatively little variation in the statistical properties of the mes-
sages among the six employees. As in the journal article corpus, most keyphrases have one to
three words. The keyphrases in the email corpus tend to be slightly longer than the keyphrases in
the journal corpus. It seems likely that this is a reflection of the tastes of the student, rather than
an intrinsic property of email messages.

In the following experiments, the data were randomly split into testing and training sets, by
randomly selecting, for each employee, 75% of the messages for training and 25% for testing.
This resulted in 235 training messages and 76 testing messages.

5.3 The Aliweb Web Page Corpus
We collected 90 web pages using the Aliweb search engine, a public search engine provided by
NEXOR Ltd. in the UK, at http://www.nexor.com/public/aliweb/search/doc/form.html. Most
web search engines use a spider to collect web pages for their index. A spider is a program that
gathers web pages by expanding an initial list of URLs by following the hypertext links on the
corresponding web pages. Aliweb is unusual in that it does not use a spider to collect web pages;
instead, it has an electronic fill-in form, where people are asked to enter any URLs that they
would like to add to the Aliweb index. Among other things, this fill-in form has a field for key-
phrases. The keyphrases are stored in the Aliweb index, along with the URLs.

Table 4: Some statistics for each of the five journals.

Journal Name

Average Number of … ± Standard Deviation Percentage of
Keyphrases in

Full Text
Keyphrases per

Document
Words per
Keyphrase

Words per
Document

Journal of the International Acad-
emy of Hospitality Research

6.2 ± 2.6 2.0 ± 0.8 6,299 ± 2,066 70.3%

Psycoloquy 8.4 ± 3.1 1.5 ± 0.6 4,350 ± 2,726 74.9%

The Neuroscientist 6.0 ± 1.4 1.8 ± 1.1 7,476 ± 856 91.7%

Journal of Computer-Aided
Molecular Design

4.7 ± 1.4 1.9 ± 0.6 6,474 ± 2,633 78.8%

Behavioral & Brain Sciences Pre-
print Archive

8.4 ± 2.2 1.6 ± 0.7 17,522 ± 6,911 87.4%

All Five Journals 7.5 ± 2.8 1.6 ± 0.7 10,781 ± 7,807 81.6%

5. The Corpora

Turney 15

We did a substring search with Aliweb, using the query string “e” (the most common letter in
English text) and setting the maximum number of matches at 1000. The intent of this search was
to gather a relatively large, random sample of web pages. We looked at each entry in the list of
search results and deleted duplicate entries, entries with no corresponding keyphrases, and
entries with clearly poor keyphrases. We were left with 90 distinct web pages with associated
keyphrases. It is our impression that the web pages were typically submitted to Aliweb by their
authors, so most of the keyphrases were probably supplied by the authors of the web pages.

Table 6 shows some statistics for the corpus. Note that the web page corpus does not have an
internal structure, in the sense that the journal article corpus separates into five journals and the
email corpus separates into six recipients. None of the keyphrases contain more than three words
and 81% contain only one word. In this corpus, keyphrases tend to contain fewer words than in
either the journal article corpus or the email corpus. About 70% of the keyphrases appear in the
full text of the corresponding web pages.

In the following experiments, this corpus is used for testing only. Thus there is no division of
the data into testing and training sets. The keyphrases in this corpus seem subjectively to be of
lower quality than the keyphrases in the other corpora. Although they are useful for testing pur-
poses, they do not seem suitable for training.

5.4 The NASA Web Page Corpus
We collected 141 web pages from NASA’s Langley Research Center. Their Technology Applica-
tions Group (TAG) has 141 web pages that describe technology they have developed, available
at http://tag-www.larc.nasa.gov/tops/tops_text.html. The web pages are intended to attract the

Table 5: Some statistics for each of the six employees.

Employee
Number of
Messages

Average Number of … ± Standard Deviation Percentage of
Keyphrases in

Full Text
Keyphrases per

Document
Words per
Keyphrase

Words per
Document

#1 47 6.6 ± 5.0 2.0 ± 1.1 542 ± 606 97.4%

#2 41 7.7 ± 6.7 1.7 ± 0.8 328 ± 374 97.5%

#3 42 4.3 ± 3.8 1.5 ± 0.8 454 ± 698 98.9%

#4 96 3.6 ± 2.1 1.8 ± 1.0 230 ± 243 97.1%

#5 41 4.6 ± 4.3 1.6 ± 0.8 453 ± 805 98.9%

#6 44 3.9 ± 2.5 2.1 ± 1.1 413 ± 674 98.8%

All Six
Employees

311 4.9 ± 4.3 1.8 ± 1.0 376 ± 561 97.9%

Table 6: Some statistics for the Aliweb web page corpus.

Description of Statistic Value of Statistic

Average Number of Keyphrases per Document ± Standard Deviation 6.0 ± 3.0

Average Number of Words per Keyphrase ± Standard Deviation 1.2 ± 0.5

Average Number of Words per Document ± Standard Deviation 949 ± 2603

Percentage of the Keyphrases that Appear in the Full Text 69.0%

5. The Corpora

16 ERB-1057, Learning to Extract Keyphrases from Text

interest of potential industrial partners and customers. Each page includes a list of keyphrases.
Table 7 shows that the documents are relatively short and relatively fewer keyphrases can be

found in the bodies of the corresponding documents. This corpus has relatively more two- and
three-word keyphrases than the other corpora. We used this corpus for testing only.

5.5 The FIPS Web Page Corpus
We gathered 35 web pages from the US government’s Federal Information Processing Standards
(FIPS), available at http://www.itl.nist.gov/div897/pubs/. These documents define the standards
to which US government departments must conform when purchasing computer hardware and
software. Each document includes a list of keyphrases.

From Table 8, we can see that the documents are relatively long and that many of the key-
phrases appear in the body of the corresponding document. There is an unusual number of four-
word keyphrases, because almost every document includes the keyphrase “Federal Information
Processing Standard”. If we ignore this phrase, the distribution is similar to the distribution in
the Email Message corpus. This corpus was used for testing only.

5.6 Testing and Training
We would like our learning algorithms to be able to perform well even when the testing data are
significantly different from the training data. In a real-world application, it would be inconve-
nient if the learning algorithm required re-training for each new type of document. Therefore,
our experiments do not use a random split of the documents into training and testing sets.
Instead, we designed the experiments to test the ability of the learning algorithms to generalize
to new data.

In our preliminary experiments, we found that the learning algorithms did generalize rela-
tively well to new testing data. The main factor influencing the quality of the generalization
appeared to be the average length of the documents in the training set, compared to the testing
set. In a real-world application, it would be reasonable to have two different learned models, one
for short documents and one for long documents. As Table 9 shows, we selected part of the jour-
nal article corpus to train the learning algorithms to handle long documents and part of the email

Table 7: Some statistics for the NASA web page corpus.

Description of Statistic Value of Statistic

Average Number of Keyphrases per Document ± Standard Deviation 4.7 ± 2.0

Average Number of Words per Keyphrase ± Standard Deviation 1.9 ± 0.9

Average Number of Words per Document ± Standard Deviation 466 ± 102

Percentage of the Keyphrases that Appear in the Full Text 65.3%

Table 8: Some statistics for the FIPS web page corpus.

Description of Statistic Value of Statistic

Average Number of Keyphrases per Document ± Standard Deviation 9.0 ± 3.5

Average Number of Words per Keyphrase ± Standard Deviation 2.0 ± 1.1

Average Number of Words per Document ± Standard Deviation 7025 ± 6385

Percentage of the Keyphrases that Appear in the Full Text 78.2%

6. Applying C4.5 to Keyphrase Extraction

Turney 17

message corpus to train the learning algorithms to handle short documents. During testing, we
used the training corpus that was most similar to the given testing corpus, with respect to docu-
ment lengths.

6. Applying C4.5 to Keyphrase Extraction
In the first set of experiments, we used the C4.5 decision tree induction algorithm (Quinlan,
1993) to classify phrases as positive or negative examples of keyphrases. In this section, we
describe the feature vectors, the settings we used for C4.5’s parameters, the bagging procedure,
and the method for sampling the training data.

6.1 Feature Vectors
We converted a document into a set of feature vectors by first making a list of all phrases of one,
two, or three consecutive non-stop words that appear in the given document. (Stop words are
words such as “the”, “of”, “and”.) We used the Iterated Lovins stemmer (see Section 3.2) to find
the stemmed form of each of these phrases. For each unique stemmed phrase, we generated a fea-
ture vector, as described in Table 10.

C4.5 has access to nine features (features 3 to 11) when building a decision tree. The leaves
of the tree attempt to predict class (feature 12). When a decision tree predicts that the class
of a vector is 1, then the phrase whole_phrase is a keyphrase, according to the tree. This
phrase is suitable for output for a human reader. We used the stemmed form of the phrase,
stemmed_phrase, for evaluating the performance of the tree. In our preliminary experi-
ments, we evaluated 110 different features, before we settled on the features in Table 10.

Table 11 shows the number of feature vectors that were generated for each corpus. In total,
we had more than 192,000 vectors for training and more than 168,000 vectors for testing. The
large majority of these vectors were negative examples of keyphrases (class 0).

6.2 C4.5 Parameter Settings
In a real-world application, we assume that the user specifies the desired number of output key-
phrases for a given document. However, a standard decision tree would not let the user control

Table 9: The correspondence between testing and training data.

Testing Corpus Corresponding Training Corpus

Name
Number of
Documents

Name
Number of
Documents

Journal Articles
— Testing Subset

20
Journal Article
— Training Subset

55

Email Messages
— Testing Subset

76
Email Messages
— Training Subset

235

Aliweb Web Pages
90

Email Messages
— Training Subset

235

NASA Web Pages
141

Email Messages
— Training Subset

235

FIPS Web Pages
35

Journal Article
— Training Subset

55

6. Applying C4.5 to Keyphrase Extraction

18 ERB-1057, Learning to Extract Keyphrases from Text

the number of feature vectors that are classified as belonging in class 1. Therefore we ran C4.5
with the -p option, which generates soft-threshold decision trees (Quinlan, 1993). Soft-threshold
decision trees can generate a probability estimate for the class of each vector. For a given docu-
ment, if the user specifies that K keyphrases are desired, then we select the K vectors that have
the highest estimated probability of being in class 1.

In addition to the -p option, we also used -c100 and -m1. The -c option sets the level of
confidence for pruning and -c100 results in minimal (but non-zero) pruning. The -m option
sets the minimum number of examples that can be used to form a branch in the tree during train-
ing and -m1 sets the minimum to one example. Compared to the default settings, these parame-
ter settings result in relatively bushy trees, which tend to overfit the data. However, in our

Table 10: A description of the feature vectors used by C4.5.

Name of Feature Description of Feature C4.5 Type

1 stemmed_phrase the stemmed form of a phrase
— for matching with human-generated phrases

ignore

2 whole_phrase the most frequent whole (unstemmed) phrase corre-
sponding to the given stemmed phrase
— for output and for calculating features 8 to 11

ignore

3 num_words_phrase the number of words in the phrase
— range: 1, 2, 3

continuous

4 first_occur_phrase the first occurrence of the stemmed phrase
— normalized by dividing by the number of words in
the document (including stop words)

continuous

5 first_occur_word the first occurrence of the earliest occurring single
stemmed word in the stemmed phrase
— normalized by dividing by the number of words in
the document (including stop words)

continuous

6 freq_phrase the frequency of the stemmed phrase
— normalized by dividing by the number of words in
the document (including stop words)

continuous

7 freq_word the frequency of the most frequent single stemmed
word in the stemmed phrase
— normalized by dividing by the number of words in
the document (including stop words)

continuous

8 relative_length the relative length of the most frequent whole phrase
— the number of characters in the whole phrase, nor-
malized by dividing by the average number of charac-
ters in all candidate phrases

continuous

9 proper_noun is the whole phrase a proper noun?
— based on the most frequent whole phrase

0, 1

10 final_adjective does the whole phrase end in a final adjective?
— based on the most frequent whole phrase

0, 1

11 common_verb does the whole phrase contain a common verb?
— based on the most frequent whole phrase

0, 1

12 class is the stemmed phrase a keyphrase?
— based on match with stemmed form of human-gen-
erated keyphrases

0, 1

7. Experiment 1: Learning to Extract Keyphrases with C4.5

Turney 19

preliminary experiments, we found that bagging compensates for overfitting, so these parameter
settings appear to work well when used in conjunction with bagging.

6.3 Bagging Trees
Bagging involves generating many different decision trees and allowing them to vote on the clas-
sification of each example (Breiman, 1996a, 1996b; Quinlan, 1996). In general, decision tree
induction algorithms have low bias but high variance. Bagging multiple trees tends to improve
performance by reducing variance. Bagging appears to have relatively little impact on bias.

Because we used soft-threshold decision trees, we combined their probability estimates by
averaging them, instead of voting. In preliminary experiments with the training documents, we
obtained good results by bagging 50 decision trees. Adding more trees had no significant effect.

6.4 Sampling the Training Data
The standard approach to bagging is to randomly sample the training data, using sampling with
replacement (Breiman, 1996a, 1996b; Quinlan, 1996). In preliminary experiments with the train-
ing data, we achieved good performance by training each of the 50 decision trees with a random
sample of 1% of the training data.

The standard approach to bagging is to ignore the class when sampling, so the distribution of
classes in the sample tends to correspond to the distribution in the training data as a whole. In
Table 11, we see that the positive examples constitute only 0.2% to 2.4% of the total number of
examples. To compensate for this, we modified the random sampling procedure so that 50% of
the sampled examples were in class 0 and the other 50% were in class 1. This appeared to
improve performance in preliminary experiments on the training data. This strategy is suggested
in Kubat et al. (1998), where it is called one-sided sampling. Kubat et al. (1998) found that one-
sided sampling significantly improved the performance of C4.5 on highly skewed data.

7. Experiment 1: Learning to Extract Keyphrases with C4.5
This section presents four experiments with C4.5. In Experiment 1A, we establish a baseline for
the performance of C4.5, using the configuration described in Section 6. We bag 50 trees, gener-
ated by randomly sampling 1% of the training data, with equal numbers of samples from the two

Table 11: The number of feature vectors for each corpus.

Train/Test Corpus Name
Number of
Documents

Total Number
of Vectors

Average
Vectors Per
Document

Percent
Class 1

Training

Journal 55 158,240 2,877 0.20%

Email 235 34,378 146 2.44%

All 290 192,618 664 0.60%

Testing

Journal 20 23,751 1,188 0.53%

Email 76 11,065 146 2.40%

Aliweb 90 26,752 297 1.08%

NASA 141 38,920 276 1.15%

FIPS 35 67,777 1,936 0.33%

All 362 168,265 465 0.80%

7. Experiment 1: Learning to Extract Keyphrases with C4.5

20 ERB-1057, Learning to Extract Keyphrases from Text

classes (keyphrase and non-keyphrase). In Experiment 1B, we vary the number of trees. The
results support the hypothesis that 50 trees are better than one tree. In Experiment 1C, we vary
the ratio of the classes. The results do not support the hypothesis that one-sided sampling
improves performance. In Experiment 1D, we vary the size of the random samples. The results
confirm the hypothesis that 1% sampling is better than 50% sampling.

7.1 Experiment 1A: The Baseline Algorithm
In the baseline configuration of C4.5, we bag 50 trees, where each tree is trained on a random
sample of 1% of the training data, with equal samples from both classes. The performance is
measured by the precision when the desired number of phrases is set to 5, 7, 9, 11, 13, and 15.
The precision is measured separately for each document in the given corpus, and then the aver-
age precision is calculated for the corpus.

Figure 6 shows the baseline performance of C4.5. The plots show the precision for the test-
ing data only (see Table 9). It appears that the e-mail model generalizes relatively well to the
Aliweb and NASA corpora, but the journal model does not generalize well to the FIPS corpus.

Table 12 shows the time required to train and Table 13 shows the time required to test, mea-
sured in seconds. The time in parentheses is the average time per document. Training involves
(1) generating feature vectors from the documents, (2) randomly sampling the training data, and
(3) building the decision trees. Table 12 shows the time for each of these three steps. Testing
involves (1) generating feature vectors from the documents and (2) using the decision trees.
Table 13 shows the time for each of these two steps. All of the code was written in C and exe-
cuted on a Pentium II 233 running Windows NT 4.0.7

Table 14 shows the phrases selected by the baseline configuration of C4.5 for three articles
from Psycoloquy (i.e., the journal article testing documents). In these three examples, the desired

Figure 6: Experiment 1A: The baseline precision of C4.5 at various cut-offs for the desired
number of extracted keyphrases.

7. Experiment 1: Learning to Extract Keyphrases with C4.5

Turney 21

number of phrases is set to nine. The phrases in bold match the author’s phrases, according to the
Iterated Lovins stemming algorithm (see Section 3).

Table 12: Experiment 1A: Training time for the baseline configuration of C4.5.

Corpus Name
Number of
Documents

Total Time (Average Time) in Seconds

Make Vectors Random Selection Make 50 Trees Total

Journal 55 56 (1.0) 147 (2.7) 47 (0.9) 250 (4.5)

Email 235 32 (0.1) 34 (0.1) 23 (0.1) 89 (0.4)

Table 13: Experiment 1A: Testing time for the baseline configuration of C4.5.

Corpus Name
Number of
Documents

Total Time (Average Time) in Seconds

Make Vectors Use 50 Trees Total

Journal 20 9 (0.5) 28 (1.4) 37 (1.9)

Email 76 11 (0.1) 95 (1.3) 106 (1.4)

Aliweb 90 17 (0.2) 113 (1.3) 130 (1.4)

NASA 141 24 (0.2) 176 (1.2) 200 (1.4)

FIPS 35 28 (0.8) 58 (1.7) 86 (2.5)

Table 14: Experiment 1A: Examples of the selected phrases for three articles from Psycoloquy.

Title: “The Base Rate Fallacy Myth”

Author’s
Keyphrases:

base rate fallacy, Bayes’ theorem, decision making, ecological
validity, ethics, fallacy, judgment, probability.

C4.5’s Top Nine
Keyphrases:

judgments, base rates, base rate fallacy, decision making, pos-
teriors, fallacy, probability, rate fallacy, probabilities.

Precision: 0.556

Title: “Brain Rhythms, Cell Assemblies and Cognition: Evidence from
the Processing of Words and Pseudowords”

Author’s
Keyphrases:

brain theory, cell assembly, cognition, event related potentials,
ERP, electroencephalograph, EEG, gamma band, Hebb, language,
lexical processing, magnetoencephalography, MEG, psychophys-
iology, periodicity, power spectral analysis, synchrony.

C4.5’s Top Nine
Keyphrases:

cell assemblies, cognitive, responses, assemblies, cognitive pro-
cessing, brain functions, word processing, oscillations, cell.

Precision: 0.111

Title: “On the Evolution of Consciousness and Language”

Author’s
Keyphrases:

consciousness, language, plans, motivation, evolution, motor sys-
tem.

C4.5’s Top Nine
Keyphrases:

psychology, language, consciousness, behavior, evolution, cog-
nitive psychology, Bridgeman, organization, modern cognitive
psychology.

Precision: 0.333

7. Experiment 1: Learning to Extract Keyphrases with C4.5

22 ERB-1057, Learning to Extract Keyphrases from Text

7.2 Experiment 1B: Varying the Number of Trees
This experiment tests the hypothesis that bagging improves the performance of C4.5 on the task
of automatic keyphrase extraction. Figure 7 shows the precision when the desired number of
phrases is set to 5, 7, 9, 11, 13, and 15. The number of trees is set to 1, 25, and 50. For four of the
corpora, the precision tends to rise as the number of trees increases. The exception is the FIPS
corpus. As we noted in the previous section, C4.5 has difficulty in generalizing from the journal
article training data to the FIPS testing data.

In Table 15, we test the significance of this rising trend, using a paired t-test. The table
shows that, when we look at the five testing collections together, 50 trees are significantly more
precise than 1 tree, when the desired number of phrases is set to 15. The only case in which 50
trees are significantly worse than 1 tree is with the FIPS collection.

7.3 Experiment 1C: Varying the Ratios of the Classes
This experiment tests the hypothesis that one-sided sampling (Kubat et al., 1998) can help C4.5
handle the skewed class distribution. Figure 8 shows the precision when the percentage of exam-
ples in class 1 (positive examples of keyphrases) is set to 1%, 25%, and 50%. For at least three of
the corpora, precision tends to fall as the percentage increases.

Table 16 shows that, when we look at the five testing collections together, there is a signifi-
cant drop in precision when 50% of the samples are positive examples, compared to 1%. Only

Figure 7: Experiment 1B: The effect of varying the number of trees on precision.

7. Experiment 1: Learning to Extract Keyphrases with C4.5

Turney 23

the email collection appears to benefit from balanced sampling of the classes. We must reject the
hypothesis that one-sided sampling (Kubat et al., 1998) is useful for our data. Although our pre-
liminary experiments with the training data suggested that one-sided sampling would be benefi-

Table 15: Experiment 1B: A comparison of 50 trees with 1 tree.

Corpus Name
Number of
Documents

Number of
Phrases

Average Precision ± Standard Deviation Significant
with 95%

Confidence1 Tree 50 Trees 50 - 1

Journal 20
5 0.190 ± 0.229 0.220 ± 0.182 0.030 ± 0.218 NO

15 0.107 ± 0.098 0.140 ± 0.078 0.033 ± 0.085 NO

Email 76
5 0.147 ± 0.151 0.176 ± 0.160 0.029 ± 0.141 NO

15 0.098 ± 0.079 0.117 ± 0.099 0.018 ± 0.060 YES

Aliweb 90
5 0.191 ± 0.182 0.187 ± 0.166 -0.004 ± 0.164 NO

15 0.102 ± 0.076 0.119 ± 0.082 0.017 ± 0.057 YES

NASA 141
5 0.119 ± 0.137 0.138 ± 0.129 0.018 ± 0.133 NO

15 0.078 ± 0.066 0.094 ± 0.069 0.016 ± 0.048 YES

FIPS 35
5 0.109 ± 0.101 0.057 ± 0.092 -0.051 ± 0.148 YES

15 0.111 ± 0.067 0.080 ± 0.062 -0.031 ± 0.078 YES

All 362
5 0.146 ± 0.158 0.155 ± 0.151 0.009 ± 0.151 NO

15 0.093 ± 0.074 0.106 ± 0.080 0.013 ± 0.060 YES

Figure 8: Experiment 1C: The effect of varying the percentage of class 1 on precision.

8. GenEx: A Hybrid Genetic Algorithm for Keyphrase Extraction

24 ERB-1057, Learning to Extract Keyphrases from Text

cial, the hypothesis is not supported by the testing data.

7.4 Experiment 1D: Varying the Sizes of the Samples
This experiment tests the hypothesis that sampling 1% of the training data results in better preci-
sion than larger samples. Figure 9 shows the precision when the sample size is 1%, 25%, and
50%. For three of the copora, increasing the sample size tends to decrease the precision. The
exceptions are the email message corpus and the FIPS web page corpus.

In Table 17, we test the significance of this trend, using a paired t-test. The table shows that,
when we look at the five testing collections together, a 1% sample rate yields better precision
than a 50% sample rate, when the desired number of phrases is set to 15. This supports the
hypothesis that a relatively small sample size is better for bagging than a large sample. This is
expected, since bagging works best when the combined models are heterogeneous (Breiman,
1996a, 1996b; Quinlan, 1996). Increasing the sample size tends to make the models more
homogenous.

8. GenEx: A Hybrid Genetic Algorithm for Keyphrase Extraction
We have experimented with many ways of applying C4.5 to automatic keyphrase extraction. The
preceding section presented a few of these experiments. During the course of our experimenta-
tion, we came to believe that a tailor-made algorithm for learning to extract keyphrases might be
able to achieve better precision than a general-purpose learning algorithm such as C4.5. This
motivated us to develop the GenEx algorithm.

GenEx has two components, the Genitor genetic algorithm (Whitley, 1989) and the Extractor
keyphrase extraction algorithm (NRC, patent pending). Extractor takes a document as input and
produces a list of keyphrases as output. Extractor has twelve parameters that determine how it
processes the input text. In GenEx, the parameters of Extractor are tuned by the Genitor genetic
algorithm (Whitley, 1989), to maximize performance (fitness) on training data. Genitor is used to
tune Extractor, but Genitor is no longer needed once the training process is complete. When we

Table 16: Experiment 1C: A comparison of 1% positive examples with 50% positive examples.

Corpus Name
Number of
Documents

Number of
Phrases

Average Precision ± Standard Deviation Significant
with 95%

Confidence1% Class 1 50% Class 1 50 - 1

Journal 20
5 0.280 ± 0.255 0.220 ± 0.182 -0.060 ± 0.216 NO

15 0.170 ± 0.113 0.140 ± 0.078 -0.030 ± 0.103 NO

Email 76
5 0.161 ± 0.160 0.176 ± 0.160 0.016 ± 0.145 NO

15 0.100 ± 0.081 0.117 ± 0.099 0.017 ± 0.055 YES

Aliweb 90
5 0.227 ± 0.190 0.187 ± 0.166 -0.040 ± 0.135 YES

15 0.120 ± 0.074 0.119 ± 0.082 -0.001 ± 0.048 NO

NASA 141
5 0.155 ± 0.159 0.138 ± 0.129 -0.017 ± 0.138 NO

15 0.092 ± 0.068 0.094 ± 0.069 0.001 ± 0.045 NO

FIPS 35
5 0.154 ± 0.162 0.057 ± 0.092 -0.097 ± 0.184 YES

15 0.141 ± 0.066 0.080 ± 0.062 -0.061 ± 0.063 YES

All 362
5 0.181 ± 0.177 0.155 ± 0.151 -0.026 ± 0.151 YES

15 0.110 ± 0.078 0.106 ± 0.080 -0.004 ± 0.058 NO

8. GenEx: A Hybrid Genetic Algorithm for Keyphrase Extraction

Turney 25

know the best parameter values, we can discard Genitor. Thus the learning system is called

Table 17: Experiment 1D: A comparison of 1% sample rate with 50% sample rate.

Corpus Name
Number of
Documents

Number of
Phrases

Average Precision ± Standard Deviation Significant
with 95%

Confidence
1%

Sample Rate
50%

Sample Rate
50 - 1

Journal 20
5 0.220 ± 0.182 0.160 ± 0.139 -0.060 ± 0.131 NO

15 0.140 ± 0.078 0.140 ± 0.094 0.000 ± 0.061 NO

Email 76
5 0.176 ± 0.160 0.187 ± 0.161 0.011 ± 0.146 NO

15 0.117 ± 0.099 0.113 ± 0.102 -0.004 ± 0.062 NO

Aliweb 90
5 0.187 ± 0.166 0.153 ± 0.144 -0.033 ± 0.168 NO

15 0.119 ± 0.082 0.094 ± 0.071 -0.025 ± 0.064 YES

NASA 141
5 0.138 ± 0.129 0.126 ± 0.136 -0.011 ± 0.143 NO

15 0.094 ± 0.069 0.079 ± 0.057 -0.014 ± 0.055 YES

FIPS 35
5 0.057 ± 0.092 0.091 ± 0.112 0.034 ± 0.133 NO

15 0.080 ± 0.062 0.099 ± 0.059 0.019 ± 0.050 YES

All 362
5 0.155 ± 0.151 0.144 ± 0.144 -0.010 ± 0.150 NO

15 0.106 ± 0.080 0.095 ± 0.076 -0.011 ± 0.060 YES

Figure 9: Experiment 1D: The effect of varying the sample rate on precision.

8. GenEx: A Hybrid Genetic Algorithm for Keyphrase Extraction

26 ERB-1057, Learning to Extract Keyphrases from Text

GenEx (Genitor plus Extractor) and the trained system is called Extractor (GenEx minus Geni-
tor).

8.1 Extractor
What follows is a conceptual description of the Extractor algorithm. For clarity, we describe
Extractor at an abstract level that ignores efficiency considerations. That is, the actual Extractor
software is essentially an efficient implementation of the following algorithm.8

There are ten steps to the Extractor algorithm. Figure 10 summarizes the ten steps. Steps 4
and 5 are conceptually independent of steps 1, 2, and 3, so they are represented as a separate
sequence. (For efficiency reasons, in the actual implementation of the algorithm, several steps
are interleaved.) Table 18 is a list of the 12 parameters of Extractor, with a brief description of
each of them. The meaning of the parameters should become clear as the algorithm is described.

The ten steps of the algorithm are:

1. Find Single Stems: Make a list of all of the words in the input text. Drop words with less
than three characters. Drop stop words (words like “and”, “or”, “if”, “he”, “she”), using a
given stop word list. Convert all remaining words to lower case. Stem the words by trun-
cating them at STEM_LENGTH characters.

The advantages of this simple form of stemming (stemming by truncation) are speed and flexi-
bility. Stemming by truncation is much faster than either the Lovins (1968) or Porter (1980)
stemming algorithms. The aggressiveness of the stemming can be adjusted by changing
STEM_LENGTH. When STEM_LENGTH is low (e.g., five characters), stemming by truncation is
more aggressive than Lovins or Porter stemming. When STEM_LENGTH is high (e.g., ten charac-

8. Add Suffixes

1. Find Single Stems

2. Score Single Stems

3. Select Top Single Stems

4. Find Stem Phrases

5. Score Stem Phrases

6. Expand Single Stems

7. Drop Duplicates

9. Add Capitals

10. Final Output

Figure 10: An overview of the Extractor algorithm.

8. GenEx: A Hybrid Genetic Algorithm for Keyphrase Extraction

Turney 27

ters), truncation is less aggressive. This gives Genitor control over the level of aggressiveness.
2. Score Single Stems: For each unique stem, count how often the stem appears in the text

and note when it first appears. If the stem “evolut” first appears in the word “Evolution”,
and “Evolution” first appears as the tenth word in the text, then the first appearance of
“evolut” is said to be in position 10. Assign a score to each stem. The score is the number
of times the stem appears in the text, multiplied by a factor. If the stem first appears
before FIRST_LOW_THRESH, then multiply the frequency by FIRST_LOW_FACTOR. If the
stem first appears after FIRST_HIGH_THRESH, then multiply the frequency by
FIRST_HIGH_FACTOR.

Typically FIRST_LOW_FACTOR is greater than one and FIRST_HIGH_FACTOR is less than one.
Thus, early, frequent stems receive a high score and late, rare stems receive a low score. This
gives Genitor control over the weight of early occurrence versus the weight of frequency. Early
occurrence and frequency are both good clues that a stem is important, but it is not obvious how
the two clues should be combined.

3. Select Top Single Stems: Rank the stems in order of decreasing score and make a list of
the top NUM_WORKING single stems.

Cutting the list at NUM_WORKING, as opposed to allowing the list to have an arbitrary length,
improves the efficiency of Extractor. It also acts as a filter for eliminating lower quality stems.

4. Find Stem Phrases: Make a list of all phrases in the input text. A phrase is defined as a
sequence of one, two, or three words that appear consecutively in the text, with no inter-
vening stop words or phrase boundaries (punctuation characters). Stem each phrase by
truncating each word in the phrase at STEM_LENGTH characters.

In our corpora, phrases of four or more words are relatively rare. Therefore Extractor only con-
siders phrases of one, two, or three words. Extractor does not consider phrases with embedded
stop words, because authors tend to avoid embedded stop words in their keyphrases. For exam-
ple, instead of “shift of bias”, which contains the stop word “of”, an author would prefer “bias
shift” as a keyphrase.

Table 18: The twelve parameters of Extractor, with some sample values.

Parameter
Number

Parameter Name
Sample
Value

Description

1 NUM_PHRASES 10 length of final phrase list

2 NUM_WORKING 50 length of working list

3 FACTOR_TWO_ONE 2.33 factor for expanding to two words

4 FACTOR_THREE_ONE 5.00 factor for expanding to three words

5 MIN_LENGTH_LOW_RANK 0.9 low rank words must be longer than this

6 MIN_RANK_LOW_LENGTH 5 short words must rank higher than this

7 FIRST_LOW_THRESH 40 definition of “early” occurrence

8 FIRST_HIGH_THRESH 400 definition of “late” occurrence

9 FIRST_LOW_FACTOR 2.0 reward for “early” occurrence

10 FIRST_HIGH_FACTOR 0.65 penalty for “late” occurrence

11 STEM_LENGTH 5 maximum characters for fixed length stem

12 SUPPRESS_PROPER 0 flag for suppressing proper nouns

8. GenEx: A Hybrid Genetic Algorithm for Keyphrase Extraction

28 ERB-1057, Learning to Extract Keyphrases from Text

5. Score Stem Phrases: For each stem phrase, count how often the stem phrase appears in
the text and note when it first appears. Assign a score to each phrase, exactly as in step 2,
using the parameters FIRST_LOW_FACTOR, FIRST_LOW_THRESH, FIRST_HIGH_FACTOR,
and FIRST_HIGH_THRESH. Then make an adjustment to each score, based on the number
of stems in the phrase. If there is only one stem in the phrase, do nothing. If there are two
stems in the phrase, multiply the score by FACTOR_TWO_ONE. If there are three stems in
the phrase, multiply the score by FACTOR_THREE_ONE.

Typically FACTOR_TWO_ONE and FACTOR_THREE_ONE are greater than one, so this adjustment
will increase the score of longer phrases. A phrase of two or three stems is necessarily never
more frequent than the most frequent single stem contained in the phrase. The factors
FACTOR_TWO_ONE and FACTOR_THREE_ONE are designed to boost the score of longer phrases, to
compensate for the fact that longer phrases are expected to otherwise have lower scores than
shorter phrases.

6. Expand Single Stems: For each stem in the list of the top NUM_WORKING single stems,
find the highest scoring stem phrase of one, two, or three stems that contains the given
single stem. The result is a list of NUM_WORKING stem phrases. Keep this list ordered by
the scores calculated in step 2.

Now that the single stems have been expanded to stem phrases, we no longer need the scores that
were calculated in step 5. That is, the score for a stem phrase (step 5) is now replaced by the
score for its corresponding single stem (step 2). The reason is that the adjustments to the score
that were introduced in step 5 are useful for expanding the single stems to stem phrases, but they
are not useful for comparing or ranking stem phrases.

7. Drop Duplicates: The list of the top NUM_WORKING stem phrases may contain dupli-
cates. For example, two single stems may expand to the same two-word stem phrase.
Delete duplicates from the ranked list of NUM_WORKING stem phrases, preserving the
highest ranked phrase.

For example, suppose that the stem “evolu” (e.g., “evolution” truncated at five characters)
appears in the fifth position in the list of the top NUM_WORKING single stems and “psych” (e.g.,
“psychology” truncated at five characters) appears in the tenth position. When the single stems
are expanded to stem phrases, we might find that “evolu psych” (e.g., “evolutionary psychology”
truncated at five characters) appears in the fifth and tenth positions in the list of stem phrases. In
this case, we delete the phrase in the tenth position. If there are duplicates, then the list now has
fewer than NUM_WORKING stem phrases.

8. Add Suffixes: For each of the remaining stem phrases, find the most frequent corre-
sponding whole phrase in the input text. For example, if “evolutionary psychology”
appears ten times in the text and “evolutionary psychologist” appears three times, then
“evolutionary psychology” is the more frequent corresponding whole phrase for the stem
phrase “evolu psych”. When counting the frequency of whole phrases, if a phrase has an
ending that indicates a possible adjective, then the frequency for that whole phrase is set
to zero. An ending such as “al”, “ic”, “ible”, etc., indicates a possible adjective. Adjec-
tives in the middle of a phrase (for example, the second word in a three-word phrase) are
acceptable; only phrases that end in adjectives are penalized. Also, if a phrase contains a
verb, the frequency for that phrase is set to zero. To check for verbs, we use a list of com-
mon verbs. A word that might be either a noun or a verb is included in this list only when
it is much more common for the word to appear as a verb than as a noun.

For example, suppose the input text contains “manage”, “managerial”, and “management”. If

8. GenEx: A Hybrid Genetic Algorithm for Keyphrase Extraction

Turney 29

STEM_LENGTH is, say, five, the stem “manag” will be expanded to “management” (a noun),
because the frequency of “managerial” will be set to zero (because it is an adjective, ending in
“al”) and the frequency of “manage” will be set to zero (because it is a verb, appearing in the list
of common verbs). Although “manage” and “managerial” would not be output, their presence in
the input text helps to boost the score of the stem “manag” (as measured in step 2), and thereby
increase the likelihood that “management” will be output.

9. Add Capitals: For each of the whole phrases (phrases with suffixes added), find the best
capitalization, where best is defined as follows. For each word in a phrase, find the capi-
talization with the least number of capitals. For a one-word phrase, this is the best capi-
talization. For a two-word or three-word phrase, this is the best capitalization, unless the
capitalization is inconsistent. The capitalization is said to be inconsistent when one of
the words has the capitalization pattern of a proper noun but another of the words does
not appear to be a proper noun (e.g., “Turing test”). When the capitalization is inconsis-
tent, see whether it can be made consistent by using the capitalization with the second
lowest number of capitals (e.g., “Turing Test”). If it cannot be made consistent, use the
inconsistent capitalization. If it can be made consistent, use the consistent capitalization.

For example, given the phrase “psychological association”, the word “association” might appear
in the text only as “Association”, whereas the word “psychological” might appear in the text as
“PSYCHOLOGICAL”, “Psychological”, and “psychological”. Using the least number of capi-
tals, we get “psychological Association”, which is inconsistent. However, it can be made consis-
tent, as “Psychological Association”.

10. Final Output: We now have an ordered list of mixed-case (upper and lower case, if
appropriate) phrases with suffixes added. The list is ordered by the scores calculated in
step 2. That is, the score of each whole phrase is based on the score of the highest scoring
single stem that appears in the phrase. The length of the list is at most NUM_WORKING,
and is likely less, due to step 7. We now form the final output list, which will have at
most NUM_PHRASES phrases. We go through the list of phrases in order, starting with the
top-ranked phrase, and output each phrase that passes the following tests, until either
NUM_PHRASES phrases have been output or we reach the end of the list. The tests are (1)
the phrase should not have the capitalization of a proper noun, unless the flag
SUPPRESS_PROPER is set to 0 (if 0 then allow proper nouns; if 1 then suppress proper
nouns); (2) the phrase should not have an ending that indicates a possible adjective; (3)
the phrase should be longer than MIN_LENGTH_LOW_RANK, where the length is measured
by the ratio of the number of characters in the candidate phrase to the number of charac-
ters in the average phrase, where the average is calculated for all phrases in the input text
that consist of one to three consecutive non-stop words; (4) if the phrase is shorter than
MIN_LENGTH_LOW_RANK, it may still be acceptable, if its rank in the list of candidate
phrases is better than (closer to the top of the list than) MIN_RANK_LOW_LENGTH; (5) if
the phrase fails both tests (3) and (4), it may still be acceptable, if its capitalization pat-
tern indicates that it is probably an abbreviation; (6) the phrase should not contain any
words that are most commonly used as verbs; (7) the phrase should not match any
phrases in a given list of stop phrases (where “match” means equal strings, ignoring case,
but including suffixes).

That is, a phrase must pass tests (1), (2), (6), (7), and at least one of tests (3), (4), and (5).
Although our experimental procedure does not consider capitalization or suffixes when com-

paring machine-generated keyphrases to human-generated keyphrases, steps 8 and 9 are still use-

8. GenEx: A Hybrid Genetic Algorithm for Keyphrase Extraction

30 ERB-1057, Learning to Extract Keyphrases from Text

ful, because some of the screening tests in step 10 are based on capitalization and suffixes. Of
course, steps 8 and 9 are essential when the output is intended for human readers.

8.2 Genitor
A genetic algorithm may be viewed as a method for optimizing a string of bits, using techniques
that are inspired by biological evolution. A genetic algorithm works with a set of bit strings,
called a population of individuals. The initial population is usually randomly generated. New
individuals (new bit strings) are created by randomly changing existing individuals (this opera-
tion is called mutation) and by combining substrings from parents to make new children (this
operation is called crossover). Each individual is assigned a score (called its fitness) based on
some measure of the quality of the bit string, with respect to a given task. Fitter individuals get
to have more children than less fit individuals. As the genetic algorithm runs, new individuals
tend to be increasingly fit, up to some asymptote.

Genitor is a steady-state genetic algorithm (Whitley, 1989), in contrast to many other genetic
algorithms, such as Genesis (Grefenstette 1983, 1986), which are generational.9 A generational
genetic algorithm updates its entire population in one batch, resulting in a sequence of distinct
generations. A steady-state genetic algorithm updates its population one individual at a time,
resulting in a continuously changing population, with no distinct generations. Typically a new
individual replaces the least fit individual in the current population. Whitley (1989) suggests that
steady-state genetic algorithms tend to be more aggressive (they have greater selective pressure)
than generational genetic algorithms.

In some preliminary tests, we compared Genitor (Whitley, 1989) and Genesis (Grefenstette
1983, 1986) for tuning Extractor. They gave similar average performance, but Genitor appeared
to have lower variance in its performance across repeated runs, so we chose Genitor for the
experiments reported here. However, we did not make a thorough comparison of the two genetic
algorithms, using different mutation rates and population sizes, since this is not the focus of our
work. Thus we do not claim that we have demonstrated that Genitor is superior to Genesis for
tuning Extractor.

8.3 GenEx: Genitor Plus Extractor
The parameters in Extractor are set using the standard machine learning paradigm of supervised
learning. The algorithm is tuned with a dataset, consisting of documents paired with target lists
of keyphrases. The dataset is divided into training and testing subsets. The learning process
involves adjusting the parameters to maximize the match between the output of Extractor and the
target keyphrase lists, using the training data. The success of the learning process is measured by
examining the match using the testing data.

We assume that the user sets the value of NUM_PHRASES, the desired number of phrases, to a
value between five and fifteen. We then set NUM_WORKING to . The remaining
ten parameters are set by Genitor. Genitor uses a binary string of 72 bits to represent the ten
parameters, as shown in Table 19. We run Genitor with a population size of 50 for 1050 trials
(these are default settings). Each trial consists of running Extractor with the parameter settings
specified in the given binary string, processing the entire training set. The fitness measure for the
binary string is based on the average precision for the whole training set. The final output of
Genitor is the highest scoring binary string. Ties are broken by choosing the earlier string.

We first tried to use the average precision on the training set as the fitness measure, but
GenEx discovered that it could achieve high average precision by adjusting the parameters so

5 NUM_PHRASES⋅

8. GenEx: A Hybrid Genetic Algorithm for Keyphrase Extraction

Turney 31

that less than NUM_PHRASES phrases were output. This is clearly not desirable, so we modified
the fitness measure to penalize GenEx when less than NUM_PHRASES phrases were output:

(5)

(6)

(7)

(8)

(9)

(10)

(11)

The penalty factor varies between 0 and 1. It has no effect (i.e., it is 1) when the number of
phrases output by GenEx equals the desired number of phrases. The penalty grows (i.e., it
approaches 0) with the square of the gap between the desired number of phrases and the actual
number of phrases. Preliminary experiments on the training data confirmed that this fitness mea-
sure led GenEx to find parameter values with high average precision while ensuring that
NUM_PHRASES phrases were output.

Since STEM_LENGTH is modified by Genitor during the GenEx learning process, the fitness
measure used by Genitor is not based on stemming by truncation. If the fitness measure were
based on stemming by truncation, a change in STEM_LENGTH would change the apparent fitness,
even if the actual output keyphrase list remained constant. Therefore fitness is measured with the
Iterated Lovins stemmer.

We ran Genitor with a Selection Bias of 2.0 and a Mutation Rate of 0.2. These are the default
settings for Genitor. We used the Adaptive Mutation operator and the Reduced Surrogate Cross-
over operator (Whitley, 1989). Adaptive Mutation determines the appropriate level of mutation
for a child according to the hamming distance between its two parents; the less the difference,
the higher the mutation rate. Reduced Surrogate Crossover first identifies all positions in which
the parent strings differ. Crossover points are only allowed to occur in these positions.

Table 19: The ten parameters of Extractor that are tuned by Genitor, with types and ranges.

Parameter
Number

Parameter Name
Parameter
Type

Parameter Range Number of Bits

3 FACTOR_TWO_ONE real [1, 3] 8

4 FACTOR_THREE_ONE real [1, 5] 8

5 MIN_LENGTH_LOW_RANK real [0.3, 3.0] 8

6 MIN_RANK_LOW_LENGTH integer [1, 20] 5

7 FIRST_LOW_THRESH integer [1, 1000] 10

8 FIRST_HIGH_THRESH integer [1, 4000] 12

9 FIRST_LOW_FACTOR real [1, 15] 8

10 FIRST_HIGH_FACTOR real [0.01, 1.0] 8

11 STEM_LENGTH integer [1, 10] 4

12 SUPPRESS_PROPER boolean [0, 1] 1

Total Number of Bits in Binary String: 72

total_matches total number of matches between GenEx and human=

total_machine_phrases total number of phrases output by GenEx=

precision total_matches total_machine_phrases⁄=

num_docs number of documents in training set=

total_desired num_docs NUM_PHRASES⋅=

penalty total_machine_phrases total_desired⁄()2=

fitness precision penalty⋅=

9. Experiment 2: Learning to Extract Keyphrases with GenEx

32 ERB-1057, Learning to Extract Keyphrases from Text

8.4 Comparison of C4.5 with GenEx
A comparison of Extractor (Section 8.1) with the feature vectors we used with C4.5 (Section 6.1)
shows that GenEx and C4.5 are learning with essentially the same feature sets. The two algo-
rithms have access to the same information, but they learn different kinds of models of key-
phrases. This section lists some of the more significant differences between GenEx and C4.5 (as
we have used it here).
1. Given a set of phrases with a shared single-word stem (for example, the set of phrases

{“learning”, “machine learning”, “learnability”} shares the single-word stem “learn”),
GenEx tends to choose the best member of the set, rather than choosing the whole set. GenEx
first identifies the shared single-word stem (steps 1 to 3 in Section 8.1) and then looks for the
best representative phrase in the set (steps 4 to 6). C4.5 tends to choose several members
from the set, if it chooses any of them.10

2. GenEx can adjust the aggressiveness of the stemming, by adjusting STEM_LENGTH. C4.5
must take the stems that are given in the training data.11

3. C4.5 is designed to yield high accuracy. GenEx is designed to yield high precision for a
given NUM_PHRASES. High precision does not necessarily correspond to high accuracy.

4. C4.5 uses the same model (the same set of decision trees) for all values of NUM_PHRASES.
With C4.5, We select the top NUM_PHRASES most probable feature vectors, but our estimate
of probability is not sensitive to the value of NUM_PHRASES. On the other hand, Genitor tunes
Extractor differently for each desired value of NUM_PHRASES.

5. GenEx might output less than the desired number of phrases, NUM_PHRASES, but C4.5 (as we
use it here) always generates exactly NUM_PHRASES phrases. Therefore, in the following
experiments, performance is measured by the average precision, where precision is defined
by (12), not by (13). Equation (12) ensures that GenEx cannot spuriously boost its score by
generating fewer phrases than the user requests.12

(12)

(13)

9. Experiment 2: Learning to Extract Keyphrases with GenEx
This set of experiments compares GenEx to C4.5. In Figure 11, we compare GenEx to both the
baseline configuration of C4.5 (Experiment 1A) and the best configuration of C4.5
(Experiment 1C). It is not quite fair to use the best configuration, because we only know that it is
the best by looking at the testing data, but GenEx does not have the advantage of any information
from the testing data. However, the performance of GenEx is good enough that we can afford to
be generous to C4.5.

Figure 11 shows the average precision on each testing corpus, with the desired number of
phrases set to 5, 7, 9, 11, 13, and 15. In Table 20, we test the significance of the difference
between GenEx and the best configuration of C4.5. The table shows that, when we look at the
five testing collections together, GenEx is significantly more precise. There is no case in which
the performance of GenEx is below the performance of C4.5.

Table 21 shows the training time for GenEx and Table 22 shows the testing time. GenEx was
trained separately for each value of NUM_PHRASES, 5, 7, 9, 11, 13, and 15. The fourth column in
Table 21 shows the average training time for a single value of NUM_PHRASES. In comparison
with C4.5, GenEx is much slower to train (Table 12), but also much faster after it has been
trained (Table 13). (The same computer was used for timing C4.5 and GenEx.)

precision number of matches desired number of machine-generated phrases⁄=

precision number of matches actual number of machine-generated phrases⁄=

9. Experiment 2: Learning to Extract Keyphrases with GenEx

Turney 33

Table 23 presents some examples of the phrases selected by GenEx, when NUM_PHRASES is
set to nine. Matches with the authors (according to the Iterated Lovins stemming algorithm) are

Table 20: A comparison of GenEx (Experiment 2) with C4.5 (Experiment 1C).

Corpus Name
Number of
Documents

Number of
Phrases

Average Precision ± Standard Deviation Significant
with 95%

ConfidenceGenEx C4.5 (1C) GenEx - C4.5

Journal 20
5 0.290 ± 0.247 0.280 ± 0.255 0.010 ± 0.137 NO

15 0.177 ± 0.130 0.170 ± 0.113 0.007 ± 0.061 NO

Email 76
5 0.234 ± 0.205 0.161 ± 0.160 0.074 ± 0.166 YES

15 0.122 ± 0.105 0.100 ± 0.081 0.022 ± 0.073 YES

Aliweb 90
5 0.264 ± 0.177 0.227 ± 0.190 0.038 ± 0.185 NO

15 0.122 ± 0.077 0.120 ± 0.074 0.002 ± 0.077 NO

NASA 141
5 0.206 ± 0.172 0.155 ± 0.159 0.051 ± 0.136 YES

15 0.118 ± 0.080 0.092 ± 0.068 0.026 ± 0.068 YES

FIPS 35
5 0.286 ± 0.170 0.154 ± 0.162 0.131 ± 0.222 YES

15 0.164 ± 0.078 0.141 ± 0.066 0.023 ± 0.081 NO

All 362
5 0.239 ± 0.187 0.181 ± 0.177 0.058 ± 0.167 YES

15 0.128 ± 0.089 0.110 ± 0.078 0.018 ± 0.073 YES

Figure 11: A comparison of GenEx (Experiment 2) with C4.5 (Experiments 1A and 1C).

9. Experiment 2: Learning to Extract Keyphrases with GenEx

34 ERB-1057, Learning to Extract Keyphrases from Text

in bold.

Table 21: Training time for GenEx.

Corpus Name
Number of
Documents

Time in Hours:Minutes:Seconds

Total
Average Per Given
Number of Phrases

Journal 55 48:28:03 08:04:40

Email 235 14:54:15 02:29:02

Table 22: Testing time for GenEx.

Corpus Name
Number of
Documents

Time in Seconds

Total Average Per Document

Journal 20 5 0.25

Email 76 4 0.05

Aliweb 90 6 0.07

NASA 141 8 0.06

FIPS 35 12 0.34

Table 23: Experiment 2: Examples of the selected phrases for three articles from Psycoloquy.

Title: “The Base Rate Fallacy Myth”

Author’s
Keyphrases:

base rate fallacy, Bayes’ theorem, decision making, ecological
validity, ethics, fallacy, judgment, probability.

GenEx’s Top Nine
Keyphrases:

base rates, judgments, probability, decision, base rate fallacy,
prior, experiments, decision making, probabilistic information.

Precision: 0.444

Title: “Brain Rhythms, Cell Assemblies and Cognition: Evidence from
the Processing of Words and Pseudowords”

Author’s
Keyphrases:

brain theory, cell assembly, cognition, event related potentials,
ERP, electroencephalograph, EEG, gamma band, Hebb, language,
lexical processing, magnetoencephalography, MEG, psychophys-
iology, periodicity, power spectral analysis, synchrony.

GenEx’s Top Nine
Keyphrases:

neurons, pseudowords, responses, cell assemblies, ignition, acti-
vation, brain, cognitive processing, gamma-band responses.

Precision: 0.000

Title: “On the Evolution of Consciousness and Language”

Author’s
Keyphrases:

consciousness, language, plans, motivation, evolution, motor sys-
tem.

GenEx’s Top Nine
Keyphrases:

plans, consciousness, language, planning, psychology, behavior,
memory, cognitive psychology, plan-executing.

Precision: 0.333

10. Experiment 3: Keyphrases for Metadata: Comparison of Word 97

Turney 35

10.Experiment 3: Keyphrases for Metadata: Comparison of Word 97
Metadata with GenEx Metadata

It is not clear what it means to say, for example, that GenEx has a precision between 20% and
30% when the desired number of phrases is five. What does this mean in practical terms? Our
answer to this question is to compare GenEx with commercial software. In this section, we com-
pare GenEx and Microsoft’s Word 97, when applied to metadata generation (see Section 2.1).

10.1 Microsoft’s Word 97: The AutoSummarize Feature
Microsoft’s Word 97 is a complete word processing software package. In this paper, we are only
concerned with the AutoSummarize feature in Word 97. The AutoSummarize feature is available
from the Tools menu. The main function of this feature is to identify important sentences in the
document that is being edited. The identified sentences can be highlighted or separated from the
remainder of the text. The user can specify a target percentage of the text for AutoSummarize to
mark as important.

As a side-effect, when AutoSummarize is used, it also fills in the Keywords field of the doc-
ument’s Properties. The Properties form is available from the File menu. AutoSummarize
always generates exactly five keyphrases (if the document contains at least five distinct words).
The keyphrases are always single words, never phrases of two or more words. They are always in
lower case, even when they are abbreviations or proper nouns. There is no way for the user of
Word 97 to adjust the AutoSummarize feature. For example, it is not possible to ask it for six
keyphrases instead of five.

10.2 Experiment
The histogram in Figure 12 compares the precision of Word 97 and GenEx, when the desired
number of phrases is set to five. Table 24 shows that GenEx is significantly more precise, when
we look at the five testing collections together. GenEx has higher precision on all five corpora
and significantly higher precision on three of the corpora. Table 25 presents the Word 97 meta-
data for three sample documents, with matches in bold.

11.Experiment 4: Keyphrases for Highlighting: Comparison of
Search 97 Highlighting with GenEx Highlighting

This section continues the theme of the previous section, the practical implications of GenEx’s

Table 24: Experiment 3: A comparison of Word 97 and GenEx on the metadata task.

Corpus
Name

Number of
Documents

Number
of

Phrases

Average Precision ± Standard Deviation Significant
with 95%

ConfidenceWord 97 GenEx Word 97 - GenEx

Journal 20 5 0.170 ± 0.187 0.290 ± 0.247 -0.120 ± 0.151 YES

Email 76 5 0.145 ± 0.137 0.234 ± 0.205 -0.089 ± 0.192 YES

Aliweb 90 5 0.236 ± 0.198 0.264 ± 0.177 -0.029 ± 0.196 NO

NASA 141 5 0.084 ± 0.138 0.206 ± 0.172 -0.122 ± 0.174 YES

FIPS 35 5 0.246 ± 0.195 0.286 ± 0.170 -0.040 ± 0.180 NO

All 362 5 0.155 ± 0.175 0.239 ± 0.187 -0.084 ± 0.186 YES

11. Experiment 4: Keyphrases for Highlighting: Comparison of

36 ERB-1057, Learning to Extract Keyphrases from Text

performance. Here we compare GenEx and Verity’s Search 97, when applied to highlighting (see
Section 2.2).

Table 25: Experiment 3: Examples of the selected phrases for three articles from Psycoloquy.

Title: “The Base Rate Fallacy Myth”

Author’s
Keyphrases:

base rate fallacy, Bayes’ theorem, decision making, ecological
validity, ethics, fallacy, judgment, probability.

Word 97’s Top Five
Keyphrases:

rate, base, information, judgment, psychology.

Precision: 0.200

Title: “Brain Rhythms, Cell Assemblies and Cognition: Evidence from
the Processing of Words and Pseudowords”

Author’s
Keyphrases:

brain theory, cell assembly, cognition, event related potentials,
ERP, electroencephalograph, EEG, gamma band, Hebb, language,
lexical processing, magnetoencephalography, MEG, psychophys-
iology, periodicity, power spectral analysis, synchrony.

Word 97’s Top Five
Keyphrases:

assembly, neuron, word, activity, process.

Precision: 0.000

Title: “On the Evolution of Consciousness and Language”

Author’s
Keyphrases:

consciousness, language, plans, motivation, evolution, motor sys-
tem.

Word 97’s Top Five
Keyphrases:

plan, consciousness, process, language, action.

Precision: 0.600

Figure 12: Experiment 3: A comparison of Word 97 and GenEx on the metadata task.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Journal Email A liweb NASA FIPS All

Corpus

P
re

ci
si

o
n

Word 97

GenEx

11. Experiment 4: Keyphrases for Highlighting: Comparison of

Turney 37

11.1 Verity’s Search 97: The Summarization Feature
Verity’s Search 97 is a complete text retrieval system, including a search engine, an index
builder, and a web crawler. In this paper, we are only concerned with the Summarization feature
in Search 97. The Summarization feature enables the search engine to display summaries of each
document in the hit list, along with the usual information, such as the document title. A summary
in Search 97 consists of a list of sentences, with highlighted keyphrases embedded in the sen-
tences. The user can control the number of sentences in a summary, by either specifying the
number of sentences desired or the percentage of the source document desired.

11.2 Experiment
In these experiments, we use Search 97 to automatically generate summaries with 2, 4, and 6
sentences each. For each summary, we list the phrases that are automatically highlighted by
Search 97. When two or more phrases in the list match (according to the Iterated Lovins stem-
mer), we keep only one of the phrases.13 These are the highlight lists for Search 97.

To make the highlight lists for GenEx, we intersect the summaries of Search 97 with the key-
phrases extracted by GenEx, when the desired number of phrases is set to 15. That is, for each of
the fifteen phrases extracted by GenEx, we see whether the phrase appears in the corresponding
summary generated by Search 97. We say that a phrase appears in a summary if the stems of the
words in the phrase match the stems of a consecutive sequence of words in the summary.

The numbers of phrases in the highlight lists are not under our direct control, although we
can partially control them indirectly by varying the number of sentences in the summaries.
Therefore, in these experiments, we use the F-measure instead of precision. Figure 13 plots the
F-measures of the Search 97 and GenEx highlight lists, as a function of the number of sentences
in the summaries. Table 26 shows that the F-measure for GenEx is significantly higher than the
F-measure for Search 97, when we look at the five testing collections together. Table 27 shows
the highlight lists for a sample document.

Table 26: A comparison of Search 97 and GenEx on the highlighting task.

Corpus
Name

Number of
Documents

Number of
Sentences

Average F-measure ± Standard Deviation Significant
with 95%

ConfidenceSearch 97 GenEx Search 97 - GenEx

Journal 20
2 0.133 ± 0.141 0.205 ± 0.199 -0.073 ± 0.169 NO

6 0.164 ± 0.123 0.244 ± 0.182 -0.080 ± 0.133 YES

Email 76
2 0.197 ± 0.242 0.232 ± 0.228 -0.035 ± 0.219 NO

6 0.169 ± 0.132 0.219 ± 0.175 -0.050 ± 0.128 YES

Aliweb 90
2 0.187 ± 0.193 0.186 ± 0.163 0.001 ± 0.158 NO

6 0.154 ± 0.122 0.180 ± 0.139 -0.027 ± 0.098 YES

NASA 141
2 0.124 ± 0.147 0.180 ± 0.149 -0.056 ± 0.156 YES

6 0.109 ± 0.091 0.179 ± 0.129 -0.070 ± 0.107 YES

FIPS 35
2 0.158 ± 0.107 0.191 ± 0.110 -0.033 ± 0.106 NO

6 0.189 ± 0.111 0.207 ± 0.113 -0.018 ± 0.105 NO

All 362
2 0.157 ± 0.181 0.193 ± 0.172 -0.036 ± 0.168 YES

6 0.142 ± 0.116 0.192 ± 0.145 -0.050 ± 0.112 YES

12. Discussion

38 ERB-1057, Learning to Extract Keyphrases from Text

12.Discussion
This section discusses the current status of Extractor and our plans for future work.

12.1 Current Status of Extractor
We have licensed the Extractor component of GenEx to Tetranet Software Inc. and to ThinkTank
Technologies Corp.14 Tetranet Software is using Extractor in their Wisebot product and Think-
Tank Technologies is using Extractor in their Virtual Research Assistant product.15 To facilitate
embedding Extractor within other software systems, Extractor is written as a DLL (Dynamically
Linked Library) with an API (Application Program Interface). The API is fully reentrant, to
allow several documents to be processed simultaneously, using separate threads for each docu-
ment. Multithreading is useful, for example, when processing web pages.

Extractor 3.1 (the current version, at the time of writing) works with English and French doc-
uments. It has, built into it, four sets of parameter values, for long and short documents in
English and French. The algorithm for French documents is almost the same as the algorithm for
English documents (as described in Section 8.1). Extractor automatically detects the language of
the document and applies the appropriate algorithm and parameter values.

12.2 Future Work
We are currently adding Japanese and German capability to Extractor. We have just begun Ger-

Figure 13: Experiment 4: A comparison of Search 97 and GenEx on the highlighting task,
with varying numbers of sentences.

13. Conclusion

Turney 39

man, but we have a working prototype of Japanese. The algorithm for Japanese is significantly
different from the algorithm for English and French, although there is much in common at an
abstract level.

In the future, we plan to add the capability to select important sentences, to automatically
generate a summary of a document. We also plan to add a mechanism for recognizing synonyms,
to improve the performance of the keyphrase extraction.

13.Conclusion
In this paper, we have presented two approaches to the task of learning to extract keyphrases
from text. The first approach was to apply the C4.5 decision tree induction algorithm (Quinlan,
1993), using bagging (Breiman, 1996a, 1996b; Quinlan, 1996) and one-sided sampling (Kubat et
al., 1998). The experiments support the claim that bagging is helpful for this task, but one-sided
sampling is not. Our experience with C4.5 led us to suspect that a custom-designed learning
algorithm might perform better than the general-purpose C4.5 algorithm. We presented the
GenEx algorithm and experiments that support the claim that GenEx performs better than C4.5.

The practical implications of the first two sets of experiments are not obvious. The practical
question is whether the machine-generated keyphrases are good enough to be useful. One way to
answer this question might be to ask people for their subjective opinions about the quality of the
keyphrases. For example, we could mix machine-generated phrases with human-generated
phrases and ask people to select their favourites. However, such a survey would not necessarily
answer the question. The machine-generated phrases might be very useful, even if they are not as
good as human-generated keyphrases. Extractor can make a keyphrase list for an average journal
article in one quarter of a second (Table 22). The speed of automatic keyphrase extraction makes
it possible to use keyphrases in applications where it would not be economically feasible to use

Table 27: An example of the performance of Search 97 and GenEx on the highlighting task.

Title: “On the Evolution of Consciousness and Language”

Author's Keyphrases: consciousness, language, plans, motivation, evolution, motor system.

Number of Sentences: 6

Search 97 Summary: Psychology can be based on plans, internally held images of achieve-
ment that organize the stimulus-response links of traditional psychology.
Consciousness is the operation of the plan-executing mechanism,
enabling behavior to be driven by plans rather than immediate environ-
mental contingencies.The mechanism unpacks a single internally held
idea into a series of actions. Language comprehension uses the plan-
monitoring mechanism to pack a series of linguistic events into an idea.
Recursive processing results from monitoring one's own speech. A new
psychology of plans promises to include consciousness by organizing
and synthesizing the many subdisciplines that have grown within psy-
chology and the cognitive neurosciences.

Search 97 Highlights: psychology, plans, organize, consciousness, plan-executing mechanism,
behavior, mechanism, idea, actions, language, processing.

Search 97 Performance: Precision: 0.273, Recall: 0.500, F-measure: 0.353.

GenEx Highlights: plans, consciousness, language, behavior, psychology, organization,
processes, environment.

GenEx Performance: Precision: 0.375, Recall: 0.500, F-measure: 0.429.

13. Conclusion

40 ERB-1057, Learning to Extract Keyphrases from Text

human-generated keyphrases, even if they were subjectively superior to machine-generated key-
phrases.

Our test of the practical value of GenEx was to compare it to commercial tools that perform
keyphrase extraction, for metadata generation and highlighting. The third set of experiments
supports the claim that GenEx is superior to Word 97’s algorithm for generating keyphrase meta-
data. The fourth set of experiments supports the claim that GenEx is superior to Search 97’s
algorithm for highlighting. Neither of these commercial algorithms use machine learning tech-
niques, so the experiments lend some support to the claim that machine learning is a valuable
approach to automatic keyphrase extraction.

Acknowledgments
Thanks to Elaine Sin of the University of Calgary for creating the keyphrases for the email mes-
sage corpus. Thanks to Joel Martin of the NRC, for writing the Java applet that is illustrated in
Figure 3. Thanks to my colleagues at NRC and the University of Ottawa for their support,
encouragement, and constructive criticism.

Notes
1. Microsoft and Word 97 are trademarks or registered trademarks of Microsoft Corporation.

Verity and Search 97 are trademarks or registered trademarks of Verity Inc.
2. We used an implementation of the Porter (1980) stemming algorithm written in Perl, by Jim

Richardson, at the University of Sydney, Australia. This implementation includes some
extensions to Porter’s original algorithm, to handle British spelling. It is available at http://
www.maths.usyd.edu.au:8000/jimr.html. For the Lovins (1968) stemming algorithm, we
used an implementation written in C, by Linh Huynh. This implementation is part of the MG
(Managing Gigabytes) search engine, which was developed by a group of people in Australia
and New Zealand. The MG code is available at http://www.kbs.citri.edu.au/mg/.

3. There may be some exceptions, such as the use of the phrase “the Mob” to refer to an inter-
national crime organization.

4. Some journals ask their authors to order their keyphrases from most general to most specific.
In this paper, we have ignored the order of the keyphrases. For most of the applications we
have considered here, the order is not important. GenEx attempts to order the keyphrases it
produces from most important to least important.

5. It is now available as a commercial product, called NetOwl Extractor, from IsoQuest. See
http://www.isoquest.com/.

6. The INSPEC database is the leading English bibliographic database for scientific and techni-
cal literature in physics, electrical engineering, electronics, communications, control engi-
neering, computers and computing, and information technology. It is produced by the
Institution of Electrical Engineers. Records in the INSPEC database have fields for both con-
trolled vocabulary index terms (called descriptors) and free index terms (called identifiers).
More information is available at http://www.iee.org.uk/publish/inspec/inspec.html.

7. The decision tree routines were written by Quinlan (1993). We wrote the feature vector gen-
eration routines and the random sampling routines. The code was carefully written for speed.

8. Extractor is written in C. A demonstration version of Extractor is available at http://
ai.iit.nrc.ca/II_public/extractor.html. The demonstration version has been trained already; it
does not allow the user to make any adjustments.

13. Conclusion

Turney 41

9. The source code for Genitor is available at ftp://ftp.cs.colostate.edu/pub/GENITOR.tar. The
source code for Genesis is available at ftp://www.aic.nrl.navy.mil/pub/galist/src/gene-
sis.tar.Z. Both of these programs are written in C.

10. It would be possible to add a post-processing step that winnows the phrases selected by C4.5,
but this would be a step down the path that leads from the general-purpose C4.5 algorithm to
the custom-made GenEx algorithm. Our point is that a custom-made algorithm has advan-
tages over a general-purpose algorithm.

11. Again, it would be possible to adjust the stemming procedure externally, by cross-validation,
but this is another step down the path that leads from C4.5 to GenEx.

12. If GenEx does generate fewer than num_phrases phrases, then we could randomly select fur-
ther phrases until we have num_phrases phrases. Thus (12) does not misrepresent the perfor-
mance of GenEx. Note that we do not use the fitness measure (11) to evaluate the
performance of GenEx.

13. Since the phrases match each other, they would match the same human-generated keyphrase,
so there is no need to keep more than one in the list.

14. See http://www.tetranetsoftware.com/ and http://www.thinktanktech.com/.
15. Tetranet and Wisebot are trademarks or registered trademarks of Tetranet Software. Think-

Tank and Virtual Research Assistant are trademarks or registered trademarks of ThinkTank
Technologies. Extractor is an Official Mark of the National Research Council of Canada.

References
Brandow, R., Mitze, K., and Rau, L.R. (1995). The automatic condensation of electronic publica-

tions by sentence selection. Information Processing and Management, 31 (5), 675-685.

Breiman, L. (1996a). Arcing Classifiers. Technical Report 460, Statistics Department, University
of California at Berkeley.

Breiman, L. (1996b). Bagging predictors. Machine Learning, 24 (2), 123-140.

Croft, B. (1991). The use of phrases and structured queries in information retrieval. SIGIR-91:
Proceedings of the 14th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 32-45, New York: ACM.

Edmundson, H.P. (1969). New methods in automatic extracting. Journal of the Association for
Computing Machinery, 16 (2), 264-285.

Fagan, J.L. (1987). Experiments in Automatic Phrase Indexing for Document Retrieval: A Com-
parison of Syntactic and Non-Syntactic Methods. Ph.D. Dissertation, Department of Com-
puter Science, Cornell University, Report #87-868, Ithaca, New York.

Ginsberg, A. (1993). A unified approach to automatic indexing and information retrieval. IEEE
Expert, 8, 46-56.

Grefenstette, J.J. (1983). A user’s guide to GENESIS. Technical Report CS-83-11, Computer Sci-
ence Department, Vanderbilt University.

Grefenstette, J.J. (1986). Optimization of control parameters for genetic algorithms. IEEE Trans-
actions on Systems, Man, and Cybernetics, 16, 122-128.

Jang, D.-H., and Myaeng, S.H. (1997). Development of a document summarization system for
effective information services. RIAO 97 Conference Proceedings: Computer-Assisted Infor-
mation Searching on Internet, pp. 101-111. Montreal, Canada.

13. Conclusion

42 ERB-1057, Learning to Extract Keyphrases from Text

Johnson, F.C., Paice, C.D., Black, W.J., and Neal, A.P. (1993). The application of linguistic pro-
cessing to automatic abstract generation. Journal of Document and Text Management, 1,
215-241.

Krovetz, R. (1993). Viewing morphology as an inference process. Proceedings of the Sixteenth
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR’93, 191-203.

Krulwich, B., and Burkey, C. (1996). Learning user information interests through the extraction
of semantically significant phrases. In M. Hearst and H. Hirsh, editors, AAAI 1996 Spring
Symposium on Machine Learning in Information Access. California: AAAI Press.

Krupka, G. (1995). SRA: Description of the SRA system as used for MUC-6. Proceedings of the
Sixth Message Understanding Conference. California: Morgan Kaufmann.

Kubat, M., Holte, R., and Matwin, S. (1998). Machine learning for the detection of oil spills in
satellite radar images. Machine Learning, 30 (2/3), 195-215.

Kupiec, J., Pedersen, J., and Chen, F. (1995). A trainable document summarizer. In E.A. Fox, P.
Ingwersen, and R. Fidel, editors, SIGIR-95: Proceedings of the 18th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 68-73,
New York: ACM.

Leung, C.-H., and Kan, W.-K. (1997). A statistical learning approach to automatic indexing of
controlled index terms. Journal of the American Society for Information Science, 48 (1), 55-
66.

Lewis, D.D. (1995). Evaluating and optimizing autonomous text classification systems. In E.A.
Fox, P. Ingwersen, and R. Fidel, editors, SIGIR-95: Proceedings of the 18th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
246-254, New York: ACM.

Lovins, J.B. (1968). Development of a stemming algorithm. Mechanical Translation and Com-
putational Linguistics, 11, 22-31.

Luhn, H.P. (1958). The automatic creation of literature abstracts. I.B.M. Journal of Research and
Development, 2 (2), 159-165.

Marsh, E., Hamburger, H., and Grishman, R. (1984). A production rule system for message sum-
marization. In AAAI-84, Proceedings of the American Association for Artificial Intelligence,
pp. 243-246. Cambridge, MA: AAAI Press/MIT Press.

MUC-3. (1991). Proceedings of the Third Message Understanding Conference. California: Mor-
gan Kaufmann.

MUC-4. (1992). Proceedings of the Fourth Message Understanding Conference. California:
Morgan Kaufmann.

MUC-5. (1993). Proceedings of the Fifth Message Understanding Conference. California: Mor-
gan Kaufmann.

MUC-6. (1995). Proceedings of the Sixth Message Understanding Conference. California: Mor-
gan Kaufmann.

Muñoz, A. (1996). Compound key word generation from document databases using a hierarchi-
cal clustering ART model. Intelligent Data Analysis, 1 (1), Amsterdam: Elsevier.

13. Conclusion

Turney 43

Nakagawa, H. (1997). Extraction of index words from manuals. RIAO 97 Conference Proceed-
ings: Computer-Assisted Information Searching on Internet, pp. 598-611. Montreal, Canada.

Paice, C.D. (1990). Constructing literature abstracts by computer: Techniques and prospects.
Information Processing and Management, 26 (1), 171-186.

Paice, C.D., and Jones, P.A. (1993). The identification of important concepts in highly structured
technical papers. SIGIR-93: Proceedings of the 16th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pp. 69-78, New York: ACM.

Porter, M.F. (1980). An algorithm for suffix stripping. Program; Automated Library and Infor-
mation Systems, 14 (3), 130-137.

Quinlan, J.R. (1993). C4.5: Programs for machine learning. California: Morgan Kaufmann.

Quinlan, J.R. (1996). Bagging, boosting, and C4.5. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI’96), pp. 725-730. AAAI Press.

Salton, G. (1988). Syntactic approaches to automatic book indexing. Proceedings of the 26th
Annual Meeting of the Association for Computational Linguistics, pp. 120-138. New York:
ACM.

Salton, G., Allan, J., Buckley, C., and Singhal, A. (1994). Automatic analysis, theme generation,
and summarization of machine-readable texts. Science, 264, 1421-1426.

Soderland, S., and Lehnert, W. (1994). Wrap-Up: A trainable discourse module for information
extraction. Journal of Artificial Intelligence Research, 2, 131-158.

Steier, A. M., and Belew, R. K. (1993). Exporting phrases: A statistical analysis of topical lan-
guage. In R. Casey and B. Croft, editors, Second Symposium on Document Analysis and
Information Retrieval, pp. 179-190.

van Rijsbergen, C.J. (1979). Information Retrieval. Second edition. London: Butterworths.

Whitley, D. (1989). The GENITOR algorithm and selective pressure. Proceedings of the Third
International Conference on Genetic Algorithms (ICGA-89), pp. 116-121. California: Mor-
gan Kaufmann.

